Advertisement

Tumor Biology

, Volume 37, Issue 4, pp 5153–5164 | Cite as

Quantitative measurement of iNOS expression in melanoma, nasopharyngeal, colorectal, and breast tumors of Tunisian patients: comparative study and clinical significance

  • Emna Dabbeche-Bouricha
  • Nadia Hadiji-Abbes
  • Rania Abdelmaksoud-Damak
  • Nesrine Alaya
  • Wajdi Ayadi
  • Slim Charfi
  • Abdelmajid Khabir
  • Tahia Sellami-Boudawara
  • Raja Mokdad-Gargouri
Original Article

Abstract

Chronic inflammation increases the risk of development of human malignancies. iNOS is an enzyme dominantly expressed during inflammatory reactions and seems to play a critical role in tumorigenesis. Our aim was to assess the iNOS expression in four types of human tumors: breast, colorectal, nasopharyngeal, and melanoma, of Tunisian patients. The level of iNOS was measured by RT-QPCR in tumor specimens. We showed that the expression of iNOS was higher in breast compared to colorectal and nasopharyngeal tumors, whereas in melanoma, the level of iNOS expression was low. Significant associations were found when comparing the iNOS expression in cancers pairs such as melanoma versus colorectal (p < 0.0001), colorectal versus nasopharyngeal (p = 0.0072), and melanoma versus breast (p < 0.0001). Furthermore, iNOS expression correlated with the Breslow thickness, Clark level, and histological subtype in melanoma, while in nasopharyngeal carcinoma, significant association was seen with age at diagnosis, TNM, metastasis, response to treatment, and expression of COX-2. Furthermore, the expression of iNOS correlated with tumor size, TNM, tumor location, and histological type in colorectal cancer, and with tumor size, tumor stage, SBR grade, and triple negative cases in breast cancer. On the other hand, immunohistochemistry analysis shows that the expression of iNOS is observed in the stroma and tumor cells as well. Overall, our results highlight that iNOS is a reliable marker for advanced stage and aggressive behavior for the four types of cancer and might be a potential promising therapeutic target.

Keywords

iNOS Expression levels Melanoma Nasopharyngeal carcinoma Colorectal cancer Breast cancer 

Notes

Acknowledgments

This work was supported by a grant of the “Tunisian Ministry of High Education and Scientific Research.” We are grateful to technicians at CHU Habib Bourguiba at Sfax-Tunisia for assistance, and we thank Henri-Jean Garchon for his precious support and the laboratory of Inserm U1173 for providing us with molecular biology reagents.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109–42.PubMedGoogle Scholar
  2. 2.
    Schulz R, Triggle CR. Role of NO in vascular smooth muscle and cardiac muscle function. Trends Pharmacol Sci. 1994;15:255–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Dominiczack AF, Bohr DF. Nitric oxide and its putative role in hypertension. Hypertension. 1995;25:1202–11.CrossRefGoogle Scholar
  4. 4.
    Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumor progression. Nat Rev Cancer. 2006;6:521–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L arginine. Nature. 1988;333:664–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997;100(9):2146–52.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 2010;23(2):75–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol. 2005;15(4):277–89.CrossRefPubMedGoogle Scholar
  9. 9.
    Aaltomaa SH, Lipponen PK, Kosma VM. Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer. Anticancer Res. 2001;21:3101–6.Google Scholar
  10. 10.
    Uotila P, Valve E, Martikainen P, Nevalainen M, Nurmi M, Harkonen P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res. 2001;29:23–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Ambs S, Merriam WG, Bennett WP, Felly-Bosco E, Ogunfusika MO, Oser SM, et al. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 1998;58:334–41.PubMedGoogle Scholar
  12. 12.
    Yagihashi N, Kasajima H, Sugai S, Matsumoto K, Ebina Y, Morita T, et al. Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virch Arch. 2000;436:109–14.CrossRefGoogle Scholar
  13. 13.
    Vakkala M, Kahlos K, Lakari E, Paakko P, Kinnula V, Soini Y. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in situ and invasive breast carcinomas. Clin Cancer Res. 2000;6:2408–16.PubMedGoogle Scholar
  14. 14.
    Bulut AS, Erden E, Sak SD, Doruk H, Kursun N, Dincol D. Significance of inducible nitric oxide synthase expression in benign and malignant breast epithelium: an immunohistochemical study of 151 cases. Virchows Arch. 2005;447:24–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Salvucci O, Carsana M, Bersani I, Tragni G, Anichini A. Antiapoptotic role of endogenous nitric oxide in human melanoma cells. Cancer Res. 2001;61:318–26.PubMedGoogle Scholar
  16. 16.
    Massi D, Franchi A, Sardi I, Magnelli L, Paglierani M, Borgognoni L, et al. Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol. 2001;194:194–200.CrossRefPubMedGoogle Scholar
  17. 17.
    Rahat MA, Hemmerlein B. Macrophage-tumor cell interactions regulate the function of nitric oxide. Front Physiol. 2013;4(144):1–15.Google Scholar
  18. 18.
    Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci U S A. 1996;93:2442–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Du Q, Zhang X, Liu Q, Zhang X, Bartels CE, Geller DA. Nitric oxide production upregulates Wnt/β-catenin signaling by inhibiting Dickkopf-1. Cancer Res. 2013;73(21):6526–37.CrossRefPubMedGoogle Scholar
  20. 20.
    Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis. 1998;19:711–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Nicholls JM, Agathanggelou A, Fung K, Zeng X, Niedobitek G. The association of squamous cell carcinomas of the nasopharynx with Epstein-Barr virus shows geographical variation reminiscent of Burkitt’s lymphoma. J Pathol. 1997;183:164–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Busson P, Keryer C, Ooka T, Corbex M. EBV-associated nasopharyngeal carcinomas: from epidemiology to virus targeting strategies. Trends Microbiol. 2004;12:356–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Khabir A, Sellami A, Sakka M, Ghorbel AM, Daoud J, Frikha M, et al. Contrasted frequencies of p53 accumulation in the two age groups of North Africa nasopharyngeal carcinomas. Clin Cancer Res. 2000;6:3932–6.PubMedGoogle Scholar
  24. 24.
    Daoud J, Toumi N, Bouaziz M, Ghorbel A, Jlidi R, Drira MM, et al. Nasopharyngeal carcinoma in childhood and adolescence: analysis of a series of 32 patients treated with combined chemotherapy and radiotherapy. Eur J Cancer. 2003;39:2349–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Feuer EJ, Wun LM, Boring CC, Flanders WD, Timmel MJ, Tong T. The life time risk of developing breast cancer. J Nat Cancer. 1993;85:892–7.CrossRefGoogle Scholar
  26. 26.
    Maalej M, Hentati D, Messai T, Kochbati L, El May A, Mrad K, et al. Breast cancer in Tunisia in 2004: a comparative clinical and epidemiological study. Bull Cancer. 2008;95:5–9.Google Scholar
  27. 27.
    Parkin DM, Ferlay J, Hamdi-Cherif M, Sitas F, Thomas J, Wabinga H, et al. Breast cancer in Africa: epidemiology and prevention. IARC Sci Publ, Lyon, France. 2003;153:262–7.Google Scholar
  28. 28.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  29. 29.
    Hsairi M, Fakhfekh R. Assessment of cancer incidence in Tunisia 1993–1997. Tunis Med. 2002;80:57–64.PubMedGoogle Scholar
  30. 30.
    Hamilton SR, Bosman FT, Boffetta P, Ilyas M, Morreau H, Nakamura SI, et al. Carcinoma of the colon and rectum. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC; 2010. p. 134–46.Google Scholar
  31. 31.
    Fazaa B, Bouassida S, Denguezli M. Le mélanome en Tunisie. Ann Dermatol Venereol. 2002;129(1):S637.Google Scholar
  32. 32.
    Geller DA, Billiar TR. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 1998;17:7–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Feng C, Cao L, Zuo Z. RNA interference-produced autoregulation of inducible nitric oxide synthase expression. FEBS Lett. 2011;585:2488–92.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Duda DG, Fukumura D, Jain RK. Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med. 2004;10:143–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Klotz T, Bloch W, Jacobs G, Niggemann S, Engelmann U, Addicks K. Immunolocalization of inducible and constitutive nitric oxide synthases in human bladder cancer. Urology. 1999;54:416–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Chhatwal VJ, Ngoi SS, Chan ST, Chia YW, Moochhala SM. Aberrant expression of nitric oxide synthase in human polyps, neoplastic colonic mucosa and surrounding peritumoral normal mucosa. Carcinogenesis. 1994;15:2081–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Nussler AK, Gansauge S, Gansauge F, et al. Overexpression of endothelium-derived nitric oxide synthase isoform 3 in the vasculature of human pancreatic tumor biopsies. Langenbecks Arch Surg. 1998;383:474–80.CrossRefPubMedGoogle Scholar
  38. 38.
    Lim KH, Ancrile BB, Kashatus DF, Counter CM. Tumour maintenance is mediated by eNOS. Nature. 2008;452(7187):646–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Günel N, Coşkun U, Sancak B, Günel U, Hasdemir O, Bozkurt S. Clinical importance of serum interleukin-18 and nitric oxide activities in breast carcinoma patients. Cancer. 2002;95:663–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Rashad YA, Elkhodary TR, El-Gayar AM, Eissa LA. Evaluation of serum levels of HER2, MMP-9, nitric oxide, and total antioxidant capacity in Egyptian breast cancer patients: correlation with clinico-pathological parameters. Sci Pharm. 2014;82(1):129–45.CrossRefPubMedGoogle Scholar
  41. 41.
    Zafirellis K, Zachaki A, Agrogiannis G, Gravani K. Inducible nitric oxide synthase expression and its prognostic significance in colorectal cancer. APMIS. 2010;118(2):115–24.CrossRefPubMedGoogle Scholar
  42. 42.
    Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995;72:41–4.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ekmekcioglu S, Ellerhorst JA, Prieto VG, Johnson MM, Broemeling LD, Grimm EA. Tumor iNOS predicts poor survival for stage III melanoma patients. Int J Cancer. 2006;119:861–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Segawa Y, Oda Y, Yamamoto H, Uryu H, Shiratsuchi H, Hirakawa N. Overexpression of inducible nitric oxide synthase and accumulation of 8-OHdG in nasopharyngeal carcinoma. Histopathology. 2008;52(2):213–23.CrossRefPubMedGoogle Scholar
  45. 45.
    Tschugguel W, Schneeberger C, Unfried G, et al. Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Res Treat. 1999;56:145–51.CrossRefPubMedGoogle Scholar
  46. 46.
    Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, et al. Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest. 2010;120:3843–54.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, et al. Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res. 2015;22:17–25.Google Scholar
  48. 48.
    Janakiram NB, Rao CV. The role of inflammation in colon cancer. Adv Exp Med Biol. 2014;816:25–52.CrossRefPubMedGoogle Scholar
  49. 49.
    Kojima M, Morisaki T, Tsukahara Y, Uchiyama A, Matsunari Y, Mibu R, et al. Nitric oxide synthase expression and nitric oxide production in human colon carcinoma tissue. J Surg Oncol. 1999;70(4):222–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Gochman E, Mahajna J, Shenzer P, Dahan A, Blatt A, Elyakim R, et al. The expression of iNOS and nitrotyrosine in colitis and colon cancer in human. Acta Histochem. 2012;114(8):827–35.CrossRefPubMedGoogle Scholar
  51. 51.
    Ohta T, Takahashi M, Ochiai A. Increased protein expression of both inducible nitric oxide synthase and cyclooxygenase-2 in human colon cancers. Cancer Lett. 2006;239(2):246–53.CrossRefPubMedGoogle Scholar
  52. 52.
    Lopez-Rivera E, Jayaraman P, Parikh F, Davies MA, Ekmekcioglu S, Izadmehr S, et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res. 2014;74(4):1067–78.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Augustine D, Sekar B, Murali S, Ramesh M, Madhavan RN, Gouda Patil S, et al. Expression of inducible nitric oxide synthase in carcinomas and sarcomas affecting the oral cavity. South Asian J Cancer. 2015;4(2):78–82.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Huang YJ, Zhang BB, Ma N, Murata M, Tang AZ, Huang GW. Nitrative and oxidative DNA damage as potential survival biomarkers for nasopharyngeal carcinoma. Med Oncol. 2011;28(1):377–84.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Emna Dabbeche-Bouricha
    • 1
    • 3
    • 4
  • Nadia Hadiji-Abbes
    • 1
  • Rania Abdelmaksoud-Damak
    • 1
  • Nesrine Alaya
    • 1
  • Wajdi Ayadi
    • 1
  • Slim Charfi
    • 2
  • Abdelmajid Khabir
    • 2
  • Tahia Sellami-Boudawara
    • 2
  • Raja Mokdad-Gargouri
    • 1
  1. 1.Laboratory of Biomass Valorisation and Production of Eukaryotic Proteins Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Department of Anatomo-pathologyCentre Hospitalo-Universitaire Habib BourguibaSfaxTunisia
  3. 3.Inserm U1016, CNRS UMR8104Institut Cochin and University Paris DescartesParisFrance
  4. 4.Inserm U1173 and University of Versailles Saint-QuentinMontigny-le-BretonneuxFrance

Personalised recommendations