Tumor Biology

, Volume 37, Issue 4, pp 4445–4455 | Cite as

Upregulation of long non-coding RNA TUG1 correlates with poor prognosis and disease status in osteosarcoma

  • Bing Ma
  • Meng Li
  • Lei Zhang
  • Ming Huang
  • Jun-Bin Lei
  • Gui-Hong Fu
  • Chun-Xin Liu
  • Qi-Wen Lai
  • Qing-Quan Chen
  • Yi-Lian Wang
Original Article


The pathogenesis of osteosarcoma involves complex genetic and epigenetic factors. This study was to explore the impact and clinical relevance of long non-coding RNA (lncRNA), Taurine up-regulated gene 1 (TUG1) on patients with osteosarcoma. Seventy-six osteosarcoma tissues and matched adjacent normal tissues were included for analysis. The plasma samples were obtained from 29 patients with osteosarcoma at pre-operation and post-operation, 42 at newly diagnosed, 18 who experienced disease progression or relapse, 45 post-treatment, 36 patients with benign bone tumor, and 20 healthy donors. Quantitative real-time reverse transcript polymerase chain reactions were used to assess the correlation of the expression levels of TUG1 with clinical parameters of osteosarcoma patients. TUG1 was significantly overexpressed in the osteosarcoma tissues compared with matched adjacent normal tissues (P < 0.01) and was closely correlated with tumor size, post-operative chemotherapy, and Enneking surgical stage. Upregulation of TUG1 strongly correlated with poor prognosis and was an independent prognostic indicator for overall survival (HR = 2.78, 95% CI = 1.29–6.00, P = 0.009) and progression-free survival (HR = 1.81, 95% CI = 1.01–3.54, P = 0.037). Our constructed nomogram containing TUG1 had more predictive accuracy than that without TUG1 (c-index 0.807 versus 0.776, respectively). In addition, for plasma samples, TUG1 expression levels were obviously decreased in post-operative patients (mean ΔCT −4.98 ± 0.22) compared with pre-operation patients (mean ΔCT −6.09 ± 0.74), and the changes of TUG1 expression levels were significantly associated with disease status. Receiver operating characteristic (ROC) curve analysis demonstrated that TUG1 could distinguish patients with osteosarcoma from healthy individuals compared with alkaline phosphatase (ALP) (the area under curve 0.849 versus 0.544). TUG1 was overexpressed in patients with osteosarcoma and strongly correlated with disease status. In addition, TUG1 may serve as a molecular indicator in maintaining surveillance and forecasting prognosis.


lncRNA TUG1 Osteosarcoma Prognosis 


Author contributions

BM and YLW conceived and designed the experiments.

BM, ML, LZ, MH, JBL, GHF, CXL, QWL, and QQC performed the experiments.

MB, ML, and LZ analyzed the data.

LZ contributed reagents/materials/analysis tools.

BM and YLW wrote the manuscript.

BM and LZ designed the software used in the analysis.

Compliance with ethical standards

The Medical Ethics Committee of The third the People’s Hospital of Bengbu (Bengbu, China) has approved this protocol. Written informed consent was obtained from all enrolled patients. All samples were handled at The third the People’s Hospital of Bengbu and made anonymous based on ethical and legal standards.

Conflicts of interest



  1. 1.
    Bielack S, Carrle D, Casali PG. Osteosarcoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20 Suppl 4:137–9. doi: 10.1093/annonc/mdp154.PubMedGoogle Scholar
  2. 2.
    Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing’s sarcoma: national cancer data base report. Clin Orthop Relat Res. 2007;459:40–7. doi: 10.1097/BLO.0b013e318059b8c9.CrossRefPubMedGoogle Scholar
  3. 3.
    Stark A, Kreicbergs A, Nilsonne U, Silfversward C. The age of osteosarcoma patients is increasing. An epidemiological study of osteosarcoma in Sweden 1971 to 1984. J Bone Joint Surg (Br). 1990;72(1):89–93.Google Scholar
  4. 4.
    Grimer RJ, Cannon SR, Taminiau AM, Bielack S, Kempf-Bielack B, Windhager R, et al. Osteosarcoma over the age of forty. Eur J Cancer. 2003;39(2):157–63.CrossRefPubMedGoogle Scholar
  5. 5.
    Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776–90.CrossRefPubMedGoogle Scholar
  6. 6.
    Hammond SM. MicroRNAs as oncogenes. Curr Opin Genet Dev. 2006;16(1):4–9. doi: 10.1016/j.gde.2005.12.005.CrossRefPubMedGoogle Scholar
  7. 7.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. doi: 10.1038/nrc1840.CrossRefPubMedGoogle Scholar
  8. 8.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi: 10.1038/nature08975.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Deng Q, He B, Gao T, Pan Y, Sun H, Xu Y, et al. Up-regulation of 91H promotes tumor metastasis and predicts poor prognosis for patients with colorectal cancer. PLoS ONE. 2014;9(7):e103022. doi: 10.1371/journal.pone.0103022.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45(11):1392–8. doi: 10.1038/ng.2771.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42. doi: 10.1053/j.gastro.2006.08.026.CrossRefPubMedGoogle Scholar
  12. 12.
    Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res. 2013;33(8):3185–93.PubMedGoogle Scholar
  13. 13.
    Tinzl M, Marberger M, Horvath S, Chypre C. DD3 PCA3 RNA analysis in urine—a new perspective for detecting prostate cancer. Eur Urol. 2004;46(2):182–6. doi: 10.1016/j.eururo.2004.06.004. discussion 7.CrossRefPubMedGoogle Scholar
  14. 14.
    Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013;26(2):155–65. doi: 10.1038/modpathol.2012.160.CrossRefPubMedGoogle Scholar
  15. 15.
    Young TL, Matsuda T, Cepko CL. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol. 2005;15(6):501–12. doi: 10.1016/j.cub.2005.02.027.CrossRefPubMedGoogle Scholar
  16. 16.
    Xu Y, Wang J, Qiu M, Xu L, Li M, Jiang F, et al. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumour Biol. 2014. doi: 10.1007/s13277-014-2763-6.PubMedCentralGoogle Scholar
  17. 17.
    Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014;5:e1243. doi: 10.1038/cddis.2014.201.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu Y, Yang S, Zhang X. WITHDRAWN: down-regulation of long non-coding RNA TUG1 suppresses melanoma cell proliferation and induces apoptosis via up-regulating microRNA-9. Biochem Biophys Res Commun. 2013. doi: 10.1016/j.bbrc.2013.09.050.Google Scholar
  19. 19.
    Zhang Q, Geng PL, Yin P, Wang XL, Jia JP, Yao J. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev. 2013;14(4):2311–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med. 2000;45(1–2):23–41.CrossRefPubMedGoogle Scholar
  21. 21.
    Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925–33. doi: 10.4161/rna.24604.CrossRefPubMedGoogle Scholar
  22. 22.
    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504. doi: 10.1101/gad.1800909.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013;32(13):1616–25. doi: 10.1038/onc.2012.193.CrossRefPubMedGoogle Scholar
  24. 24.
    Qi P, Xu MD, Ni SJ, Huang D, Wei P, Tan C, et al. Low expression of LOC285194 is associated with poor prognosis in colorectal cancer. J Transl Med. 2013;11:122. doi: 10.1186/1479-5876-11-122.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nagarajan R, Kamruzzaman A, Ness KK, Marchese VG, Sklar C, Mertens A, et al. Twenty years of follow-up of survivors of childhood osteosarcoma: a report from the childhood cancer survivor study. Cancer. 2011;117(3):625–34. doi: 10.1002/cncr.25446.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang Y, Yao J, Meng H, Yu Z, Wang Z, Yuan X, et al. A novel long non-coding RNA, hypoxia-inducible factor-2alpha promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro. Mol Med Rep. 2015;11(4):2534–40. doi: 10.3892/mmr.2014.3024.PubMedGoogle Scholar
  27. 27.
    Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. 2014. doi: 10.1007/s13277-014-2631-4.Google Scholar
  28. 28.
    Chan LH, Wang W, Yeung W, Deng Y, Yuan P, Mak KK. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene. 2014;33(40):4857–66. doi: 10.1038/onc.2013.433.CrossRefPubMedGoogle Scholar
  29. 29.
    Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27. doi: 10.1101/gad.17446611.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karakiewicz PI, Briganti A, Chun FK, Trinh QD, Perrotte P, Ficarra V, et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol. 2007;25(11):1316–22. doi: 10.1200/JCO.2006.06.1218.CrossRefPubMedGoogle Scholar
  31. 31.
    Wierda WG, O’Brien S, Wang X, Faderl S, Ferrajoli A, Do KA, et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109(11):4679–85. doi: 10.1182/blood-2005-12-051458.CrossRefPubMedGoogle Scholar
  32. 32.
    Deng Q, He B, Liu X, Yue J, Ying H, Pan Y, et al. Prognostic value of pre-operative inflammatory response biomarkers in gastric cancer patients and the construction of a predictive model. J Transl Med. 2015;13(1):409. doi: 10.1186/s12967-015-0409-0.Google Scholar
  33. 33.
    Sternberg CN. Are nomograms better than currently available stage groupings for bladder cancer? J Clin Oncol. 2006;24(24):3819–20. doi: 10.1200/JCO.2006.07.1290.CrossRefPubMedGoogle Scholar
  34. 34.
    Touijer K, Scardino PT. Nomograms for staging, prognosis, and predicting treatment outcomes. Cancer. 2009;115(13 Suppl):3107–11. doi: 10.1002/cncr.24352.CrossRefPubMedGoogle Scholar
  35. 35.
    Isin M, Ozgur E, Cetin G, Erten N, Aktan M, Gezer U, et al. Investigation of circulating lncRNAs in B-cell neoplasms. Clin Chim Acta. 2014;431:255–9. doi: 10.1016/j.cca.2014.02.010.CrossRefPubMedGoogle Scholar
  36. 36.
    Ren S, Wang F, Shen J, Sun Y, Xu W, Lu J, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49(13):2949–59. doi: 10.1016/j.ejca.2013.04.026.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Bing Ma
    • 1
  • Meng Li
    • 2
  • Lei Zhang
    • 3
  • Ming Huang
    • 1
  • Jun-Bin Lei
    • 1
  • Gui-Hong Fu
    • 4
  • Chun-Xin Liu
    • 5
  • Qi-Wen Lai
    • 6
  • Qing-Quan Chen
    • 7
  • Yi-Lian Wang
    • 8
  1. 1.Department of OrthopaedicsThe third the People’s Hospital of BengbuBengbuChina
  2. 2.Department of OrthopaedicsAnhui Provincial HospitalHeifeiChina
  3. 3.Department of OrthopaedicsLanxi People’s HospitalJinhuaChina
  4. 4.Department of OrthopaedicsGuizhou Province Osteological HospitalGuiyangChina
  5. 5.Department of OrthopaedicsFujian Jianou HospitalFujianChina
  6. 6.Department of PediatricsDehua County HospitalFujianChina
  7. 7.Department of OrthopaedicsFuzhou General Hospital of Nanjing Military AreaFuzhouChina
  8. 8.Department of CardiologyThe Second People’s Hospital of LianyungangXinpuChina

Personalised recommendations