Tumor Biology

, Volume 37, Issue 4, pp 4457–4466 | Cite as

Upregulation of RICTOR gene transcription by the proinflammatory cytokines through NF-κB pathway contributes to the metastasis of renal cell carcinoma

  • Bo Sun
  • Liwei Chen
  • Hui Fu
  • Lin Guo
  • Hua Guo
  • Ning Zhang
Original Article


Metastasis accounts for more than 50 % of deaths among renal cell carcinoma (RCC) patients, and therefore, it is important to study the biology of metastasis and identify metastasis-associated biomarkers for risk prognosis and stratification of patients for an individualized therapy of RCC. In cultured RCC cells, knockdown of Rictor by short hairpin RNA (shRNA) inhibited cell migration and invasion, probably due to impairments in activation of Akt. Pretreatment with tumor necrosis factor α (TNFα) or interleukin 6 (IL-6) enhanced the expression of Rictor and the migration of renal cancer cells. Mechanistic analysis showed that TNFα induced the activation of NF-κB in RCC cells. Luciferase reporter analysis revealed a NF-κB responding element (−301 to −51 bp) at the promoter region of Rictor. Chromatin immunoprecipitation (ChIP) analysis further confirmed that TNFα-induced binding of p65 with the promoter of Rictor. In a xenograft model, knockdown of Rictor-blocked RCC cells metastasis to the mouse lungs and livers. Taken together, our results suggest that the proinflammatory cytokine TNFα promotes the expression of Rictor through the NF-κB pathway.


Metastasis NF-κB Rictor Renal cell carcinoma TNFα 



This work was supported by the NFSC (81472683, 81072160, 81201646, and 81125019), 973 Program (2011CB933100), Program of Tianjin Higher School Innovation Team (TD12-5025), and Research Seed Foundation of Tianjin Medical University Cancer Hospital and Institute (1421). We thank Zhe Liu, Wei Du, and Litao Qin for their help in luciferase and ChIP assays, and Qiuping Dong for plasmid construction.

Compliance with ethical standards

The manuscript does not contain clinical studies or patient data. And all procedures performed in studies involving animals were in accordance with the ethical standards of the ethics committee in Cancer Institute and Hospital of Tianjin Medical University, which was draw up on the basis of the National Institutes of Health Guide for the Care and Use of Laboratory Animals. All efforts were made to minimize suffering.

Conflicts of interest



  1. 1.
    Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med. 1996;335:865–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7:245–57.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wysocki PJ. mtor in renal cell cancer: modulator of tumor biology and therapeutic target. Expert Rev Mol Diagn. 2009;9:231–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. Front Immunol. 2011;2:98.PubMedGoogle Scholar
  7. 7.
    Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, et al. TNF-α induces epithelial-mesenchymal transition of renal cell carcinoma cells via a gsk3beta-dependent mechanism. Mol Cancer Res. 2012;10:1109–19.CrossRefPubMedGoogle Scholar
  9. 9.
    Hamaguchi T, Wakabayashi H, Matsumine A, Sudo A, Uchida A. TNF inhibitor suppresses bone metastasis in a breast cancer cell line. Biochem Biophys Res Commun. 2011;407:525–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Yadav A, Kumar B, Datta J, Teknos TN, Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the jak-stat3-snail signaling pathway. Mol Cancer Res. 2011;9:1658–67.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, et al. The IL-6/JAK/stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. 2013;15:848–62.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mikami S, Mizuno R, Kosaka T, Saya H, Oya M, Okada Y. Expression of TNF-α and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. Int J Cancer. 2015;136:1504–14.CrossRefPubMedGoogle Scholar
  13. 13.
    Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2015;21:962–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Wittekind C, Neid M. Cancer invasion and metastasis. Oncology. 2005;69 Suppl 1:14–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Hayden MS, Ghosh S. Signaling to nf-kappab. Genes Dev. 2004;18:2195–224.CrossRefPubMedGoogle Scholar
  16. 16.
    Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappab functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. Ikkβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.CrossRefPubMedGoogle Scholar
  18. 18.
    Mauad TH, van Nieuwkerk CM, Dingemans KP, Smit JJ, Schinkel AH, Notenboom RG, et al. Mice with homozygous disruption of the mdr2 p-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol. 1994;145:1237–45.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Xue C, Wyckoff J, Liang F, Sidani M, Violini S, Tsai KL, et al. Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res. 2006;66:192–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang B, Gu F, She C, Guo H, Li W, Niu R, et al. Reduction of Akt2 inhibits migration and invasion of glioma cells. Int J Cancer. 2009;125:585–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Guo H, Gu F, Li W, Zhang B, Niu R, Fu L, et al. Reduction of protein kinase C ζ inhibits migration and invasion of human glioblastoma cells. J Neurochem. 2009;109:203–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Y, Wang J, Wu M, Wan W, Sun R, Yang D, et al. Down-regulation of 3-phosphoinositide-dependent protein kinase-1 levels inhibits migration and experimental metastasis of human breast cancer cells. Mol Cancer Res. 2009;7:944–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Figlin RA, Kaufmann I, Brechbiel J. Targeting PI3k and mTORC2 in metastatic renal cell carcinoma: new strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer. 2013;133:788–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Polivka Jr J, Janku F. Molecular targets for cancer therapy in the PI3K/Akt/mTOR pathway. Pharmacol Ther. 2014;142:164–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Francipane MG, Lagasse E. mTOR pathway in colorectal cancer: an update. Oncotarget. 2014;5:49–66.PubMedGoogle Scholar
  26. 26.
    Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.CrossRefPubMedGoogle Scholar
  27. 27.
    Wullschleger S, Loewith R, Hall MN. Tor signaling in growth and metabolism. Cell. 2006;124:471–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997;277:99–101.CrossRefPubMedGoogle Scholar
  29. 29.
    Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 s6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998;95:1432–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14:1296–302.CrossRefPubMedGoogle Scholar
  31. 31.
    Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian tor complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Janes MR, Vu C, Mallya S, Shieh MP, Limon JJ, Li LS, et al. Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leukemia. 2013;27:586–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Bhagwat SV, Gokhale PC, Crew AP, Cooke A, Yao Y, Mantis C, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer Ther. 2011;10:1394–406.CrossRefPubMedGoogle Scholar
  34. 34.
    Naing A, Aghajanian C, Raymond E, Olmos D, Schwartz G, Oelmann E, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma. Br J Cancer. 2012;107:1093–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhang F, Zhang X, Li M, Chen P, Zhang B, Guo H, et al. mTOR complex component Rictor interacts with PKCζ and regulates cancer cell metastasis. Cancer Res. 2010;70:9360–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Liu Z, Garrard WT. Long-range interactions between three transcriptional enhancers, active Vκ gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol Cell Biol. 2005;25:3220–31.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sun R, Gao P, Chen L, Ma D, Wang J, Oppenheim JJ, et al. Protein kinase C ζ is required for epidermal growth factor-induced chemotaxis of human breast cancer cells. Cancer Res. 2005;65:1433–41.CrossRefPubMedGoogle Scholar
  38. 38.
    Heyninck K, Beyaert R. Crosstalk between NF-κB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun. 2001;4:259–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Wu Y, Zhou BP. TNF-α/NF-κB/snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102:639–44.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li D, Zhong Y, Zhou Y, Sun H, Zheng X, Zhao C, et al. Autocrine TNF-α-mediated NF-κB activation is a determinant for evasion of CD40-induced cytotoxicity in cancer cells. Biochem Biophys Res Commun. 2013;436:467–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Prabhavathy D, Subramanian CK, Karunagaran D. Re-expression of HPV16 E2 in SiHa (human cervical cancer) cells potentiates NF-κB activation induced by TNF-α concurrently increasing senescence and survival. Biosci Rep. 2015;35. doi: 10.1042/BSR20140160.
  42. 42.
    De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-κB to promote colorectal cancer cell growth. Oncogene. 2015;34:3493–503.CrossRefPubMedGoogle Scholar
  43. 43.
    Lin CM, Shyu KG, Wang BW, Chang H, Chen YH, Chiu JH. Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STATt3 and VEGF: an in vitro and in ovo approach. J Agric Food Chem. 2010;58:7082–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Shinohara N, Nonomura K, Abe T, Maruyama S, Kamai T, Takahashi M, et al. A new prognostic classification for overall survival in Asian patients with previously untreated metastatic renal cell carcinoma. Cancer Sci. 2012;103:1695–700.CrossRefPubMedGoogle Scholar
  45. 45.
    Escudier B, Albiges L, Sonpavde G. Optimal management of metastatic renal cell carcinoma: current status. Drugs. 2013;73:427–38.CrossRefPubMedGoogle Scholar
  46. 46.
    Albouy B, Gross Goupil M, Escudier B, Massard C. Renal cell carcinoma management and therapies in 2010. Bull Cancer. 2010;97:17–28.PubMedGoogle Scholar
  47. 47.
    Legramanti S, Antonelli A, Ferrari V, Arrighi N, Corti S, Zanotelli T, et al. Simeone C: [results of targeted therapies for m1 renal cell carcinoma: our experience]. Urologia. 2012;79 Suppl 19:72–5.PubMedGoogle Scholar
  48. 48.
    Bashir T, Cloninger C, Artinian N, Anderson L, Bernath A, Holmes B, et al. Conditional astroglial Rictor overexpression induces malignant glioma in mice. PLoS One. 2012;7:e47741.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Abboud HE, Choudhury GG. Microrna-21-induced dissociation of PDCD4 from Rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion. Exp Cell Res. 2014;328:99–117.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.CrossRefPubMedGoogle Scholar
  51. 51.
    Granado-Serrano AB, Martin MA, Bravo L, Goya L, Ramos S. Quercetin attenuates TNF-induced inflammation in hepatic cells by inhibiting the NF-κB pathway. Nutr Cancer. 2012;64:588–98.CrossRefPubMedGoogle Scholar
  52. 52.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STATt-mediated trefoil gene activation in gp130 mutant mice. Nat Med. 2002;8:1089–97.CrossRefPubMedGoogle Scholar
  54. 54.
    Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, et al. Aurora kinase a promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 2013;145:1312-1322 e1311-1318.Google Scholar
  55. 55.
    van der Woude CJ, Moshage H, Homan M, Kleibeuker JH, Jansen PL, van Dekken H. Expression of apoptosis related proteins during malignant progression in chronic ulcerative colitis. J Clin Pathol. 2005;58:811–4.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    de Vivar Chevez AR, Finke J, Bukowski R. The role of inflammation in kidney cancer. Adv Exp Med Biol. 2014;816:197–234.CrossRefPubMedGoogle Scholar
  57. 57.
    Lu Y, Zhao X, Luo G, Shen G, Li K, Ren G, et al. Thioredoxin-like protein 2b facilitates colon cancer cell proliferation and inhibits apoptosis via NF-κB pathway. Cancer Lett. 2015;363:119–26.CrossRefPubMedGoogle Scholar
  58. 58.
    Luo Y, Wang SX, Zhou ZQ, Wang Z, Zhang YG, Zhang Y, et al. Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-κB) pathway. Tumour Biol. 2014;35:11483–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Xia J, Wang F, Wang L, Fan Q. Elevated serine protease HTRA1 inhibits cell proliferation, reduces invasion, and induces apoptosis in esophageal squamous cell carcinoma by blocking the nuclear factor-κb signaling pathway. Tumour biol. 2013;34:317–28.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinChina
  2. 2.Research Center of Basic Medical ScienceTianjin Medical UniversityTianjinChina

Personalised recommendations