Advertisement

Tumor Biology

, Volume 37, Issue 4, pp 4841–4847 | Cite as

Deregulation of miR-1, miR486, and let-7a in cytogenetically normal acute myeloid leukemia: association with NPM1 and FLT3 mutation and clinical characteristics

  • Samaneh Sadat Seyyedi
  • Masoud Soleimani
  • Marjan Yaghmaie
  • Monireh Ajami
  • Mansoureh Ajami
  • Shahram Pourbeyranvand
  • Kamran Alimoghaddam
  • Seyed Mohammad Akrami
Original Article

Abstract

Cytogenetically normal acute myeloid leukemia (CN-AML) constitutes the largest subgroup of AML patients that is associated with molecular alteration. MiRNAs have been shown to be aberrantly expressed in CN-AML. In addition, specific miRNA (miR) expression patterns were found to be associated with certain genetic alterations in these patients. This study investigated the expression level of miR-1, miR-486, and let-7a in 45 CN-AML patients well characterized for FLT3 and/or NPM1 mutations using real-time quantitative RT-PCR and evaluated the association between candidate miRs expression and clinical features. Our data revealed that miR-1 was significantly overexpressed in CN-AML patients, and increasing expression of miR-1 correlated with NPM1 mutation (P < 0.05) and lower hemoglobin level was also observed in patients with miR-1 overexpression (P < 0.05). The expression of miR-1 was much higher in AML-M2 compared with other subtypes. Further, we found significantly increasing miR-486 expression in 40 of 45 (89 %) CN-AML patients. There was no significant association of upregulation of miR-486 with clinical parameters. The expression level of miR-486 was increased in AML-M2 subtype. The levels of let-7a were significantly increased in CN-AML patients compared to the healthy control and significantly higher in the NPM1 ± CN-AML patients. There was no correlation detected between the level of let-7a and FLT3+. An increasing expression level of let-7a was demonstrated in M2 subtype. In addition, our data showed no significant association between increasing let-7a and clinical characteristic. Comparison of peripheral blood and bone marrow results in 30 CN-AML patients showed that there is a considerable concordance between PB and BM in the results of candidate miR levels (P < 0.001). In conclusion, further studies should also be performed to detect functional mechanism of these miRs.

Keywords

Cytogenetically normal AML miR-1 miR-486 let-7a 

Notes

Acknowledgments

This work was supported by Tehran University of Medical Sciences (Grant No, 21389) and Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran, Iran.

References

  1. 1.
    Seedhouse CH, Pallis M, Grundy M, Shang S, Russell NH. FLT3-ITD expression levels and their effect on STAT5 in AML with and without NPM mutations. Br J Haematol. 2009;147(5):653–61.CrossRefPubMedGoogle Scholar
  2. 2.
    Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909–18.CrossRefPubMedGoogle Scholar
  3. 3.
    Lu Y, Chen W, Stein A, Weiss LM, Huang Q. C/EBPA gene mutation and C/EBPA promoter hypermethylation in acute myeloid leukemia with normal cytogenetics. Am J Hematol. 2010;85(6):426–30.PubMedGoogle Scholar
  4. 4.
    Bacher U, Schnittger S, Haferlach T. Molecular genetics in acute myeloid leukemia. Curr Opin Oncol. 2010;22(6):646–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Pietschmann K, Bolck HA, Buchwald M, Spielberg S, Polzer H, Spiekermann K, et al. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors. Mol Cancer Ther. 2012;11(11):2373–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Deeb KK, Smonskey MT, DeFedericis H, Deeb G, Sait SN, Wetzler M, et al. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT3 gene in adult acute myeloid leukemia. Leuk Res Rep. 2014;3(2):86–9.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 2005;106(12):3768–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Barakat FH, Luthra R, Yin CC, Barkoh BA, Hai S, Jamil W, et al. Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study. Arch Pathol Lab Med. 2011;135(8):994–1000.CrossRefPubMedGoogle Scholar
  9. 9.
    Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A. 2008;105(10):3945–50. doi: 10.1073/pnas.0800135105.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Faraoni I, Laterza S, Ardiri D, Ciardi C, Fazi F, Lo-Coco F. MiR-424 and miR-155 deregulated expression in cytogenetically normal acute myeloid leukaemia: correlation with NPM1 and FLT3 mutation status. J Hematol Oncol. 2012;5:26. doi: 10.1186/1756-8722-5-26.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrozek K, et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol. 2013;31(17):2086–93.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bryant A, Palma CA, Jayaswal V, Yang YW, Lutherborrow M, Ma DD. miR-10a is aberrantly overexpressed in Nucleophosmin1 mutated acute myeloid leukaemia and its suppression induces cell death. Mol Cancer. 2012;11(8):1476–4598.Google Scholar
  15. 15.
    Chen XX, Lin J, Qian J, Qian W, Yang J, Ma JC, et al. Dysregulation of miR-124-1 predicts favorable prognosis in acute myeloid leukemia. Clin Biochem. 2014;47(1–2):63–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Wieser R, Scheideler M, Hackl H, Engelmann M, Schneckenleithner C, Hiden K, et al. microRNAs in acute myeloid leukemia: expression patterns, correlations with genetic and clinical parameters, and prognostic significance. Genes Chromosomes Cancer. 2010;49(3):193–203.PubMedGoogle Scholar
  17. 17.
    Havelange V, Ranganathan P, Geyer S, Nicolet D, Huang X, Yu X, et al. Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML. Blood. 2014;123(15):2412–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep. 2015;33(5):2176–82.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Schotte D, Pieters R, Den Boer ML. MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia. 2012;26(1):1–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen Y, Jacamo R, Konopleva M, Garzon R, Croce C, Andreeff M. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest. 2013;123(6):2395–407.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Becker H, Marcucci G, Maharry K, Radmacher MD, Mrozek K, Margeson D, et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28(4):596–604.CrossRefPubMedGoogle Scholar
  22. 22.
    Gutierrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las RJ, Ticona FV, et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia. 2010;24(3):629–37. doi: 10.1038/leu.2009.274.CrossRefPubMedGoogle Scholar
  23. 23.
    Nohata N, Hanazawa T, Enokida H, Seki N. microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget. 2012;3(1):9–21.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Li Y, Lin J, Yang J, Qian J, Qian W, Yao DM, et al. Overexpressed let-7a-3 is associated with poor outcome in acute myeloid leukemia. Leuk Res. 2013;37(12):1642–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang LS, Li L, Chu S, Shiang KD, Li M, Sun HY, et al. MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood. 2015;125(8):1302–13.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28(14):2348–55. doi: 10.1200/jco.2009.27.3730.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gomez-Benito M, Conchillo A, Garcia MA, Vazquez I, Maicas M, Vicente C, et al. EVI1 controls proliferation in acute myeloid leukaemia through modulation of miR-1-2. Br J Cancer. 2010;103(8):1292–6. doi: 10.1038/sj.bjc.6605874.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wu X, Li S, Xu X, Wu S, Chen R, Jiang Q, et al. The potential value of miR-1 and miR-374b as biomarkers for colorectal cancer. Int J Clin Exp Pathol. 2015;8(3):2840–51.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu L, Zhang Y, Wang H, Zhang G, Ding Y, Zhao L. Tumor suppressor miR-1 restrains epithelial-mesenchymal transition and metastasis of colorectal carcinoma via the MAPK and PI3K/AKT pathway. J Transl Med. 2014;12:244. doi: 10.1186/s12967-014-0244-8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shaham L, Vendramini E, Ge Y, Goren Y, Birger Y, Tijssen MR, et al. MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome. Blood. 2015;125(8):1292–301.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jinlong S, Lin F, Yonghui L, Li Y, Weidong W. Identification of let-7a-2-3p or/and miR-188-5p as prognostic biomarkers in cytogenetically normal acute myeloid leukemia. PLoS One. 2015;10(2):e0118099.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tong WG, Sandhu VK, Wood BL, Hendrie PC, Becker PS, Pagel JM, et al. Correlation between peripheral blood and bone marrow regarding FLT3-ITD and NPM1 mutational status in patients with acute myeloid leukemia. Haematologica. 2015;100(3):e97–8. doi: 10.3324/haematol.2014.118422.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Weinkauff R, Estey EH, Starostik P, Hayes K, Huh YO, Hirsch-Ginsberg C, et al. Use of peripheral blood blasts vs bone marrow blasts for diagnosis of acute leukemia. Am J Clin Pathol. 1999;111(6):733–40.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Samaneh Sadat Seyyedi
    • 1
  • Masoud Soleimani
    • 2
  • Marjan Yaghmaie
    • 3
  • Monireh Ajami
    • 2
  • Mansoureh Ajami
    • 2
  • Shahram Pourbeyranvand
    • 4
  • Kamran Alimoghaddam
    • 3
  • Seyed Mohammad Akrami
    • 5
  1. 1.Department of Medical GeneticsTehran University of Medical Sciences, International Campus (TUMS—IC)TehranIran
  2. 2.Department of Hematology, School of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Hematology-Oncology and Stem Cell Transplantation Research CenterTehran University of Medical SciencesTehranIran
  4. 4.Department of Anatomy, School of Medical SciencesTarbiat Modares UniversityTehranIran
  5. 5.Department of Medical GeneticsTehran University of Medical SciencesTehranIran

Personalised recommendations