Tumor Biology

, Volume 37, Issue 4, pp 4501–4507 | Cite as

CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion

Original Article

Abstract

The identification of new biomarkers for the early detection of hepatocellular carcinoma is critical in the development of tumor-targeted therapy, which is possibly advantageous on the prognosis of this disease. Results from our previous study indicated that CCL15 can be a specific proteomic biomarker of hepatocellular carcinoma, which plays an important role in tumorigenesis and tumor invasion. In this study, we found that CCL15 can induce hepatocellular carcinoma cell migration and invasion. Furthermore, CCR1, the receptor of CCL15, was demonstrated to play a critical role in metastatic hepatocellular carcinoma. CCR1 short hairpin RNA significantly inhibited CCL15-induced chemotaxis and invasion of HepG2 cells. Moreover, CCR1 knockdown significantly limited the activity and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. These findings suggest that CCR1 plays critical roles in hepatocellular carcinoma metastasis, which indicates that CCR1 may be a potential molecular target in hepatocellular carcinoma therapy.

Keywords

CCL15 CCR1 HCC Migration Invasion 

Notes

Acknowledgments

This work was supported by research grants from the National Scientific Foundation of China (NSFC #81101754)

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339–46.CrossRefPubMedGoogle Scholar
  3. 3.
    Singh S, Sadanandam A, Singh RK. Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev. 2007;26:453–67.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang S, Youn BS, Gao JL, Murphy PM, Kwon BS. Differential effects of leukotactin-1 and macrophage inflammatory protein-1 alpha on neutrophils mediated by CCR1. J Immunol. 1999;162:4938–42.PubMedGoogle Scholar
  6. 6.
    Pardigol A, Forssmann U, Zucht HD, Loetscher P, Schulz-Knappe P, Baggiolini M, et al. HCC-2, a human chemokine: gene structure, expression pattern, and biological activity. Proc Natl Acad Sci U S A. 1998;95:6308–13.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Youn BS, Zhang SM, Lee EK, Park DH, Broxmeyer HE, Murphy PM, et al. Molecular cloning of leukotactin-1: a novel human beta-chemokine, a chemoattractant for neutrophils, monocytes, and lymphocytes, and a potent agonist at CC chemokine receptors 1 and 3. J Immunol. 1997;159:5201–5.PubMedGoogle Scholar
  8. 8.
    Hwang J, Kim CW, Son KN, Han KY, Lee KH, Kleinman HK, et al. Angiogenic activity of human CC chemokine CCL15 in vitro and in vivo. FEBS Lett. 2004;570:47–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Ko J, Kim IS, Jang SW, Lee YH, Shin SY, Min DS, et al. Leukotactin-1/CCL15-induced chemotaxis signaling through CCR1 in HOS cells. FEBS Lett. 2002;515:159–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol. 2001;2:108–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Mukaida N. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol. 2000;72:391–8.PubMedGoogle Scholar
  12. 12.
    Kunz M, Hartmann A, Flory E, Toksoy A, Koczan D, Thiesen HJ, et al. Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma. A potential mechanism for high tumor aggressiveness. Am J Pathol. 1999;155:753–63.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Desbaillets I, Diserens AC, Tribolet N, Hamou MF, Van Meir EG. Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med. 1997;186:1201–12.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gao JL, Wynn TA, Chang Y, Lee EJ, Broxmeyer HE, Cooper S, et al. Impaired host defense, hematopoiesis, granulomatous inflammation and type 1–type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med. 1997;185:1959–68.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lu P, Nakamoto Y, Nemoto-Sasaki Y, Fujii C, Wang H, Hashii M, et al. Potential interaction between CCR1 and its ligand, CCL3, induced by endogenously produced interleukin-1 in human hepatomas. Am J Pathol. 2003;162:1249–58.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu X, Fan J, Wang X, Zhou J, Qiu S, Yu Y, et al. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion. Biochem Biophys Res Commun. 2007;355:866–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Sun R, Gao P, Chen L, Ma D, Wang J, Oppenheim JJ, et al. Protein kinase C zeta is required for epidermal growth factor-induced chemotaxis of human breast cancer cells. Cancer Res. 2005;65:1433–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Carloni V, Romanelli RG, Mercurio AM, Pinzani M, Laffi G, Cotrozzi G, et al. Knockout of alpha6 beta1-integrin expression reverses the transformed phenotype of hepatocarcinoma cells. Gastroenterology. 1998;115:433–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Das G, Shiras A, Shanmuganandam K, Shastry P. Rictor regulates MMP-9 activity and invasion through Raf-1-MEK-ERK signaling pathway in glioma cells. Mol Carcinog. 2011;50:412–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.CrossRefPubMedGoogle Scholar
  21. 21.
    Luker KE, Lewin SA, Mihalko LA, Schmidt BT, Winkler JS, Coggins NL, Thomas DG, Luker GD. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene. 2012.Google Scholar
  22. 22.
    Li J, Sun R, Tao K, Wang G. The CCL21/CCR7 pathway plays a key role in human colon cancer metastasis through regulation of matrix metalloproteinase-9. Dig Liver Dis. 2011;43:40–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang X, Walton W, Cook DN, Hua X, Tilley S, Haskell CA, et al. The chemokine, CCL3, and its receptor, CCR1, mediate thoracic radiation-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45:127–35.CrossRefPubMedGoogle Scholar
  24. 24.
    Suffee N, Hlawaty H, Meddahi-Pelle A, Maillard L, Louedec L, Haddad O, Martin L, Laguillier C, Richard B, Oudar O, Letourneur D, Charnaux N, Sutton A. RANTES/CCL5-induced pro-angiogenic effects depend on CCR1, CCR5 and glycosaminoglycans. Angiogenesis. (2012).Google Scholar
  25. 25.
    Gong X, Gong W, Kuhns DB, Ben-Baruch A, Howard OM, Wang JM. Monocyte chemotactic protein-2 (MCP-2) uses CCR1 and CCR2B as its functional receptors. J Biol Chem. 1997;272:11682–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Corbin ME, Pourciau S, Morgan TW, Boudreaux M, Peterson KE. Ligand up-regulation does not correlate with a role for CCR1 in pathogenesis in a mouse model of non-lymphocyte-mediated neurological disease. J Neurovirol. 2006;12:241–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Escher SE, Forssmann U, Frimpong-Boateng A, Adermann K, Vakili J, Sticht H, et al. Functional analysis of chemically synthesized derivatives of the human CC chemokine CCL15/HCC-2, a high affinity CCR1 ligand. J Pept Res. 2004;63:36–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Hwang J, Son KN, Kim CW, Ko J, Na DS, Kwon BS, et al. Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine. 2005;30:254–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Tsou CL, Gladue RP, Carroll LA, Paradis T, Boyd JG, Nelson RT, et al. Identification of C-C chemokine receptor 1 (CCR1) as the monocyte hemofiltrate C-C chemokine (HCC)-1 receptor. J Exp Med. 1998;188:603–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Choi SW, Hildebrandt GC, Olkiewicz KM, Hanauer DA, Chaudhary MN, Silva IA, et al. CCR1/CCL5 (RANTES) receptor-ligand interactions modulate allogeneic T-cell responses and graft-versus-host disease following stem-cell transplantation. Blood. 2007;110:3447–55.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sebag M. CCR1 blockade and myeloma bone disease. Blood. 2012;120:1351–2.CrossRefPubMedGoogle Scholar
  32. 32.
    Semnani RT, Mahapatra L, Dembele B, Konate S, Metenou S, Dolo H, et al. Expanded numbers of circulating myeloid dendritic cells in patent human filarial infection reflect lower CCR1 expression. J Immunol. 2010;185:6364–72.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Furuichi K, Gao JL, Horuk R, Wada T, Kaneko S, Murphy PM. Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J Immunol. 2008;181:8670–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Scotton C, Milliken D, Wilson J, Raju S, Balkwill F. Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours. Br J Cancer. 2001;85:891–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z, et al. Autocrine CCL5 signaling promotes invasion and migration of CD133(+) ovarian cancer stem-like cells via NF-kappaB-mediated MMP-9 upregulation. Stem Cells. 2012;30:2309–19.CrossRefPubMedGoogle Scholar
  36. 36.
    Trentin L, Miorin M, Facco M, Baesso I, Carraro S, Cabrelle A, et al. Multiple myeloma plasma cells show different chemokine receptor profiles at sites of disease activity. Br J Haematol. 2007;138:594–602.CrossRefPubMedGoogle Scholar
  37. 37.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Seo JM, Park S, Kim JH. Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J Biol Chem. 2012;287:13840–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hayashi Y, Osanai M, Lee GH. Fascin-1 expression correlates with repression of E-cadherin expression in hepatocellular carcinoma cells and augments their invasiveness in combination with matrix metalloproteinases. Cancer Sci. 2011;102:1228–35.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Clinical Laboratory, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
  2. 2.Department of LaboratoryTianjin Third Central HospitalTianjinChina
  3. 3.Key Laboratory of Cancer Prevention and Therapy, The National “863” Program of Clinical Research LaboratoryTianjinChina

Personalised recommendations