Advertisement

Tumor Biology

, Volume 37, Issue 4, pp 4791–4801 | Cite as

W346 inhibits cell growth, invasion, induces cycle arrest and potentiates apoptosis in human gastric cancer cells in vitro through the NF-κB signaling pathway

  • Yiqun Xia
  • Bixia Weng
  • Zhankun Wang
  • Yanting Kang
  • Lingyi Shi
  • Guanqun Huang
  • Shilong Ying
  • Xiaojing Du
  • Qiuxiang Chen
  • Rong Jin
  • Jianzhang Wu
  • Guang Liang
Original Article

Abstract

The therapeutic agent selectively killing cancer cells is urgently needed for gastric cancer treatment. Curcumin has been investigated for its effect on the cancer treatment because of its significant therapeutic potential and safety profile. A synthetic unsymmetry mono-carbonyl compound termed W346 was developed from curcumin. In this study, we investigated the potential antineoplastic effect and mechanism of W346 against human gastric cancer cells. W346 suppressed the proliferation and invasion, blocked cell cycle arrest at G2/M phase, and increased apoptosis in gastric cancer cells, and it presented obviously improved anticancer activity than curcumin. Moreover, W346 effectively inhibited tumor necrosis factor (TNF-α)-induced NF-κB activation by suppressing IKK phosphorylation, inhibiting IκB-α degradation, and restraining the accumulation of NF-κB subunit p65 nuclear translocation. W346 also affected NF-κB-regulated downstream products involved in cycle arrest and apoptosis. In a word, W346 exhibited significantly improved anti-gastric cancer activity over curcumin by targeting NF-κB signaling pathway, and it is likely to be a promising starting point for the development of curcumin-based therapeutic agent.

Keywords

W346 Anticancer drug Curcumin Gastric cancer Apoptosis NF-κB 

Notes

Compliance with ethical standards

Conflicts of interest

None

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81272462), the Zhejiang Province Natural Science Fund of China (Grant Nos. LY14H160044, Y13H300005), and the Technology Foundation for Medical Science of Zhejiang Province (Grant No. 2012KYA129).

References

  1. 1.
    Wagner AD, Grothe W, Haerting J, Kleber G, Grothey A, Fleig WE. Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:2903–9.CrossRefGoogle Scholar
  2. 2.
    Kim HK, Choi IJ, Kim CG, Kim HS, Oshima A, Michalowski A, et al. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS One. 2011;6, e16694.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010;29:405–34.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci CMLS. 2008;65:1631–52.CrossRefPubMedGoogle Scholar
  5. 5.
    Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 2007;67:3853–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Prakobwong S, Gupta SC, Kim JH, Sung B, Pinlaor P, Hiraku Y, et al. Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. Carcinogenesis. 2011;32:1372–80.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.CrossRefPubMedGoogle Scholar
  8. 8.
    Kamat AM, Tharakan ST, Sung B, Aggarwal BB. Curcumin potentiates the antitumor effects of bacillus Calmette-Guerin against bladder cancer through the downregulation of NF-kappaB and upregulation of TRAIL receptors. Cancer Res. 2009;69:8958–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Shakibaei M, Mobasheri A, Lueders C, Busch F, Shayan P, Goel A. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-kappaB and Src protein kinase signaling pathways. PLoS One. 2013;8, e57218.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Van Waes C. Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res An Off J Am Assoc Cancer Res. 2007;13:1076–82.CrossRefGoogle Scholar
  11. 11.
    Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Vermeulen L, De Wilde G, Notebaert S, Vanden Berghe W, Haegeman G. Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol. 2002;64:963–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Li L, Aggarwal BB, Shishodia S, Abbruzzese J, Kurzrock R. Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer. 2004;101:2351–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Weichert W, Boehm M, Gekeler V, Bahra M, Langrehr J, Neuhaus P, et al. High expression of RelA/p65 is associated with activation of nuclear factor-kappaB-dependent signaling in pancreatic cancer and marks a patient population with poor prognosis. Br J Cancer. 2007;97:523–30.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W, et al. Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res An Off J Am Assoc Cancer Res. 2009;15:2248–58.CrossRefGoogle Scholar
  16. 16.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18.CrossRefPubMedGoogle Scholar
  17. 17.
    Qiu X, Du Y, Lou B, Zuo Y, Shao W, Huo Y, et al. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-kappaB signaling pathway. J Med Chem. 2010;53:8260–73.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liang G, Shao L, Wang Y, Zhao C, Chu Y, Xiao J, et al. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem. 2009;17:2623–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao C, Liu Z, Liang G. Promising curcumin-based drug design: mono-carbonyl analogues of curcumin (MACs). Curr Pharm Des. 2013;19:2114–35.PubMedGoogle Scholar
  20. 20.
    Kasinski AL, Du Y, Thomas SL, Zhao J, Sun SY, Khuri FR, et al. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis (2-flurobenzylidene) piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol Pharmacol. 2008;74:654–61.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Weng Q, Fu L, Chen G, Hui J, Song J, Feng J, et al. Design, synthesis, and anticancer evaluation of long-chain alkoxylated mono-carbonyl analogues of curcumin. Eur J Med Chem. 2015;103:44–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Liang G, Li X, Chen L, Yang S, Wu X, Studer E, et al. Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin. Bioorg Med Chem Lett. 2008;18:1525–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Young AM, Campbell EC, Lynch S, Dunn MH, Powis SJ, Suckling J. Regional susceptibility to TNF-alpha induction of murine brain inflammation via classical IKK/NF-kappaB signalling. PLoS One. 2012;7, e39049.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell. 2004;6:297–305.CrossRefPubMedGoogle Scholar
  25. 25.
    Cervantes A, Rosello S, Roda D, Rodriguez-Braun E. The treatment of advanced gastric cancer: current strategies and future perspectives. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2008;19 Suppl 5:v103–7.CrossRefGoogle Scholar
  26. 26.
    Rasool M, Malik A, Arooj M, Manan A, Qazi MH, Kamal MA, Sheikh IA, Gan SH, Asif M, Naseer MI. Roles of Natural Compounds from Medicinal Plants in Cancer Treatment: Structure and Mode of Action at Molecular Level. Medicinal chemistry. 2015.Google Scholar
  27. 27.
    Cecarini V, Cuccioloni M, Mozzicafreddo M, Bonfili L, Angeletti M, Eleuteri AM. Targeting proteasomes with natural occurring compounds in cancer treatment. Curr Cancer Drug Targets. 2011;11:307–24.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang CL, Liu YY, Ma YG, Xue YX, Liu DG, Ren Y, et al. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS One. 2012;7, e37960.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    O’Sullivan-Coyne G, O’Sullivan GC, O’Donovan TR, Piwocka K, McKenna SL. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer. 2009;101:1585–95.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee DS, Lee MK, Kim JH. Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells. Anticancer Res. 2009;29:5039–44.PubMedGoogle Scholar
  31. 31.
    Cai XZ, Wang J, Li XD, Wang GL, Liu FN, Cheng MS, et al. Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol Ther. 2009;8:1360–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M, et al. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biol Ther. 2007;6:178–84.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Izzo JG, Malhotra U, Wu TT, Ensor J, Luthra R, Lee JH, et al. Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:748–54.CrossRefGoogle Scholar
  34. 34.
    Nakahara C, Nakamura K, Yamanaka N, Baba E, Wada M, Matsunaga H, et al. Cyclosporin-A enhances docetaxel-induced apoptosis through inhibition of nuclear factor-kappaB activation in human gastric carcinoma cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9:5409–16.Google Scholar
  35. 35.
    Manu KA, Shanmugam MK, Ramachandran L, Li F, Fong CW, Kumar AP, et al. First evidence that gamma-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-kappaB pathway. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:2220–9.CrossRefGoogle Scholar
  36. 36.
    Maeda S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, Yamaji Y, et al. H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology. 2000;119:97–108.CrossRefPubMedGoogle Scholar
  37. 37.
    Ueda M, Kokura S, Imamoto E, Naito Y, Handa O, Takagi T, et al. Blocking of NF-kappaB activation enhances the tumor necrosis factor alpha-induced apoptosis of a human gastric cancer cell line. Cancer Lett. 2003;193:177–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Sohma I, Fujiwara Y, Sugita Y, Yoshioka A, Shirakawa M, Moon JH, et al. Parthenolide, an NF-kappaB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer. Cancer Genomics Proteomics. 2011;8:39–47.PubMedGoogle Scholar
  39. 39.
    Zhang D, Qiu L, Jin X, Guo Z, Guo C. Nuclear factor-kappaB inhibition by parthenolide potentiates the efficacy of Taxol in non-small cell lung cancer in vitro and in vivo. Mol Cancer Res MCR. 2009;7:1139–49.CrossRefPubMedGoogle Scholar
  40. 40.
    Sintara K, Thong-Ngam D, Patumraj S, Klaikeaw N, Chatsuwan T. Curcumin suppresses gastric NF-kappaB activation and macromolecular leakage in Helicobacter pylori-infected rats. World J Gastroenterol WJG. 2010;16:4039–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Kunnumakkara AB, Diagaradjane P, Guha S, Deorukhkar A, Shentu S, Aggarwal BB, et al. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:2128–36.CrossRefGoogle Scholar
  42. 42.
    Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett. 2005;224:53–65.CrossRefPubMedGoogle Scholar
  43. 43.
    Yu LL, Wu JG, Dai N, Yu HG, Si JM. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-kappaB transcription factor. Oncol Rep. 2011;26:1197–203.PubMedGoogle Scholar
  44. 44.
    Zhou B, Zuo Y, Li B, Wang H, Liu H, Wang X, et al. Deubiquitinase inhibition of 19S regulatory particles by 4-arylidene curcumin analog AC17 causes NF-kappaB inhibition and p53 reactivation in human lung cancer cells. Mol Cancer Ther. 2013;12:1381–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang Y, Xiao J, Zhou H, Yang S, Wu X, Jiang C, et al. A novel monocarbonyl analogue of curcumin, (1E, 4E)-1,5-bis (2, 3-dimethoxyphenyl) penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway. J Med Chem. 2011;54:3768–78.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yiqun Xia
    • 1
    • 2
  • Bixia Weng
    • 2
    • 3
  • Zhankun Wang
    • 4
  • Yanting Kang
    • 1
    • 2
  • Lingyi Shi
    • 2
  • Guanqun Huang
    • 5
  • Shilong Ying
    • 2
  • Xiaojing Du
    • 1
    • 2
  • Qiuxiang Chen
    • 1
    • 2
  • Rong Jin
    • 1
    • 2
  • Jianzhang Wu
    • 2
  • Guang Liang
    • 2
  1. 1.Department of Digestive DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  2. 2.Chemical Biology Research Center, College of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
  3. 3.Pharmacy DepartmentTonglu First People’s HospitalHangzhouChina
  4. 4.Institute of Sports ScienceWenzhou Medical UniversityWenzhouChina
  5. 5.Department of General SurgeryThe fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina

Personalised recommendations