Tumor Biology

, Volume 37, Issue 1, pp 57–60 | Cite as

The role of TARBP2 in the development and progression of cancers



TARBP2 is a RNA-binding protein (RBP) involved in miRNA processing and maturation. TARBP2 plays significant roles in many biological and pathological conditions, including viral expression of HIV-1, microsatellite instability, cancer stem cell properties, and tumor progression. Overexpression of TARBP2 was observed in many cancers such as prostate cancer, cutaneous malignant melanoma, and adrenocortical carcinoma. In addition, TARBP2 was also found to be downregulated in some cancers including colorectal cancer, gastric cancer, Ewing sarcoma, and upper urinary tract urothelial carcinoma. Therefore, whether TARBP2 functions as the tumor suppressor or tumor promoter is conflicting. In the present review, we provide an overview of current knowledge concerning the role of TARBP2 in tumor development and progression.


TARBP2 Oncogene Cancer Tumor suppressor gene 



This work was supported by grants from the National Natural Science Foundation of China (NSFC) (Grant Number: 81401847).


  1. 1.
    Garre P, Perez-Segura P, Diaz-Rubio E, Caldes T, de la Hoya M. Reassessing the TARBP2 mutation rate in hereditary nonpolyposis colorectal cancer. Nat Genet. 2010;42:817–8. author reply 818.CrossRefPubMedGoogle Scholar
  2. 2.
    Zimmermann J, Latta L, Beck A, Leidinger P, Fecher-Trost C, Schlenstedt G, et al. Trans-activation response (TAR) RNA-binding protein 2 is a novel modulator of transient receptor potential canonical 4 (TRPC4) protein. J Biol Chem. 2014;289:9766–80.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bannwarth S, Talakoub L, Letourneur F, Duarte M, Purcell DF, Hiscott J, et al. Organization of the human tarbp2 gene reveals two promoters that are repressed in an astrocytic cell line. J Biol Chem. 2001;276:48803–13.CrossRefPubMedGoogle Scholar
  4. 4.
    Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009;41:365–70.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sand M, Skrygan M, Georgas D, Arenz C, Gambichler T, Sand D, et al. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol Carcinog. 2012;51:916–22.CrossRefPubMedGoogle Scholar
  6. 6.
    de Sousa GR, Ribeiro TC, Faria AM, Mariani BM, Lerario AM, Zerbini MC, Soares IC, Wakamatsu A, Alves VA, Mendonca BB, Fragoso MC, Latronico AC, Almeida MQ. Low DICER1 expression is associated with poor clinical outcome in adrenocortical carcinoma. Oncotarget. 2015.Google Scholar
  7. 7.
    Kozak CA, Gatignol A, Graham K, Jeang KT, McBride OW. Genetic mapping in human and mouse of the locus encoding TRBP, a protein that binds the TAR region of the human immunodeficiency virus (HIV-1). Genomics. 1995;25:66–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Caramuta S, Lee L, Ozata DM, Akcakaya P, Xie H, Hoog A, et al. Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma. Endocr Relat Cancer. 2013;20:551–64.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bai S, Nunez AL, Wei S, Ziober A, Yao Y, Tomaszewski JE, et al. Microsatellite instability and TARBP2 mutation study in upper urinary tract urothelial carcinoma. Am J Clin Pathol. 2013;139:765–70.CrossRefPubMedGoogle Scholar
  10. 10.
    De Vito C, Riggi N, Cornaz S, Suva ML, Baumer K, Provero P, et al. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell. 2012;21:807–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Sousa E, Graca I, Baptista T, Vieira FQ, Palmeira C, Henrique R, et al. Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing. Epigenetics. 2013;8:548–58.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sand M, Skrygan M, Georgas D, Sand D, Gambichler T, Altmeyer P, et al. The miRNA machinery in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases and benign melanocytic nevi. Cell Tissue Res. 2012;350:119–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim MS, Oh JE, Kim YR, Park SW, Kang MR, Kim SS, et al. Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. J Pathol. 2010;221:139–46.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhong J, Peters AH, Lee K, Braun RE. A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat Genet. 1999;22:171–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Goodarzi H, Zhang S, Buss CG, Fish L, Tavazoie S, Tavazoie SF. Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. Nature. 2014;513:256–60.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lin X, Wu M, Liu P, Wei F, Li L, Tang H, et al. Up-regulation and worse prognostic marker of cytoplasmic TARBP2 expression in obstinate breast cancer. Med Oncol. 2014;31:868.CrossRefPubMedGoogle Scholar
  17. 17.
    Caramuta S, Lee L, Ozata DM, Akcakaya P, Georgii-Hemming P, Xie H, et al. Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J. 2013;3:e152.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yamamoto H, Imai K. Microsatellite instability: an update. Arch Toxicol. 2015;89:899–921.CrossRefPubMedGoogle Scholar
  19. 19.
    Audenet F, Yates DR, Cussenot O, Roupret M. The role of chemotherapy in the treatment of urothelial cell carcinoma of the upper urinary tract (UUT-UCC). Urol Oncol. 2013;31:407–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Cornaz-Buros S, Riggi N, DeVito C, Sarre A, Letovanec I, Provero P, et al. Targeting cancer stem-like cells as an approach to defeating cellular heterogeneity in Ewing sarcoma. Cancer Res. 2014;74:6610–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Torrezan GT, Ferreira EN, Nakahata AM, Barros BD, Castro MT, Correa BR, et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun. 2014;5:4039.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Dermatology, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.Department of Orthopedics Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations