Tumor Biology

, Volume 37, Issue 1, pp 61–69 | Cite as

The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment

  • Amanda L. Placone
  • Alfredo Quiñones-Hinojosa
  • Peter C. Searson
Review

Abstract

Gliomas and brain-metastatic tumors contribute to hundreds of thousands of deaths every year. Typical survival times for brain cancer patients, even with surgical, chemotherapy, and radiation treatment, remain very low despite advances in treatment. In brain cancers, astrocytes, which comprise approximately 50 % of the cells in the brain, become activated, resulting in a layer of reactive astrocytes surrounding the tumor. This process of reactive gliosis, which involves the secretion of growth factors and cytokines, helps repair injury in the brain, but also plays a role in disease progression. In this review, we survey the mechanisms by which astrocytes modulate the local tumor microenvironment, enhancing proliferation, invasion, chemoprotection, and immunoprotection of tumor cells. Consideration of the effect of astrocytes and reactive gliosis in in vitro and in vivo assays may allow us to obtain a more complete picture of the interactions occurring at the tumor microenvironment, which will provide additional insight into potential pathways that can be targeted by brain cancer therapeutics.

Keywords

Astrocytes Glioma Reactive gliosis Invasion Proliferation 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Median cancer survival times. Macmillan Cancer Support. 2011.Google Scholar
  2. 2.
    Glioblastoma and malignant astrocytoma. American Brain Tumor Association. 2014.Google Scholar
  3. 3.
    Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. The biology of brain metastases—translation to new therapies. Nat Rev Clin Oncol. 2011;8:344–56.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Chaichana KL, Gadkaree S, Rao K, Link T, Rigamonti D, Purtell M, et al. Patients undergoing surgery of intracranial metastases have different outcomes based on their primary pathology. Neurol Res. 2013;35:1059–69.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kaneko Y, Tajiri N, Staples M, Reyes S, Lozano D, Sanberg PR, et al. Bone marrow-derived stem cell therapy for metastatic brain cancers. Cell Transplant. 2015;24:625–30.CrossRefPubMedGoogle Scholar
  6. 6.
    O’Brien ER, Howarth C, Sibson NR. The role of astrocytes in CNS tumors: pre-clinical models and novel imaging approaches. Front Cell Neurosci. 2013;7:40.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Coniglio SJ, Segall JE. Review: molecular mechanism of microglia stimulated glioblastoma invasion. Matrix Biol. 2013;32:372–80.CrossRefPubMedGoogle Scholar
  8. 8.
    Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro-oncology. 2012:nos116.Google Scholar
  9. 9.
    Wei J, Gabrusiewicz K, Heimberger A. The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013;2013.Google Scholar
  10. 10.
    Ridet J, Privat A, Malhotra S, Gage F. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997;20:570–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32:6391–410.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li R, Li G, Deng L, Liu Q, Dai J, Shen J, et al. IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep. 2010;23:1553–9.PubMedGoogle Scholar
  13. 13.
    Rathke-Hartlieb S, Budde P, Ewert S, Schlomann U, Staege MS, Jockusch H, et al. Elevated expression of membrane type 1 metalloproteinase (MT1-MMP) in reactive astrocytes following neurodegeneration in mouse central nervous system. FEBS Lett. 2000;481:227–34.CrossRefPubMedGoogle Scholar
  14. 14.
    Seike T, Fujita K, Yamakawa Y, Kido MA, Takiguchi S, Teramoto N, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis. 2011;28:13–25.CrossRefPubMedGoogle Scholar
  15. 15.
    Roth P, Junker M, Tritschler I, Mittelbronn M, Dombrowski Y, Breit SN, et al. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res. 2010;16:3851–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Sierra A, Price JE, Garcia-Ramirez M, Méndez O, López L, Fabra A. Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Investig; J Tech Methods Pathol. 1997;77:357–68.Google Scholar
  17. 17.
    Rath BH, Fair JM, Jamal M, Camphausen K, Tofilon PJ. Astrocytes enhance the invasion potential of glioblastoma stem-like cells. PLoS One. 2013;8, e54752.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Heldin C-H. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal. 2013;11:97.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chuang HN, van Rossum D, Sieger D, Siam L, Klemm F, Bleckmann A, et al. Carcinoma cells misuse the host tissue damage response to invade the brain. Glia. 2013;61:1331–46.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hu F, a Dzaye OD, Hahn A, Yu Y, Scavetta RJ, Dittmar G, et al. Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages toll-like receptor 2 signaling. Neuro-Oncology. 2015;17:200–10.CrossRefPubMedGoogle Scholar
  21. 21.
    Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res. 2000;60:4767–70.PubMedGoogle Scholar
  22. 22.
    Huang J-Y, Cheng Y-J, Lin Y-P, Lin H-C, Su C-C, Juliano R, et al. Extracellular matrix of glioblastoma inhibits polarization and transmigration of T cells: the role of tenascin-C in immune suppression. J Immunol. 2010;185:1450–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Joseph B, Venero JL. A brief overview of multitalented microglia. Microglia, Springer, 2013, pp 3–8.Google Scholar
  24. 24.
    Gonzalez-Perez O, Lopez-Virgen V, Quiñones-Hinojosa A. Astrocytes: everything but the glue. Neuroimmunol Neuroinflammation. 2015;2:115.CrossRefGoogle Scholar
  25. 25.
    Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 2005;6:626–40.CrossRefPubMedGoogle Scholar
  26. 26.
    Placone AL, McGuiggan PM, Bergles DE, Guerrero-Cazares H, Quiñones-Hinojosa A, Searson PC. Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials. 2015;42:134–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, et al. Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation. 2014;11:12.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.CrossRefPubMedGoogle Scholar
  29. 29.
    Quiñones-Hinojosa A, Chaichana K. The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol. 2007;205:313–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Fitzgerald DP, Palmieri D, Hua E, Hargrave E, Herring JM, Qian Y, et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis. 2008;25:799–810.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pedersen PH, Ness GO, Engebraaten O, Bjerkvig R, Lillehaug JR, Laerum OD. Heterogeneous response to the growth factors [EGF, PDGF (bb), TGF‐α, BFGF, il‐2] on glioma spheroid growth, migration and invasion. Int J Cancer. 1994;56:255–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang L, Cossette SM, Rarick KR, Gershan J, Dwinell MB, Harder DR, et al. Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS One. 2013;8, e80933.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Klein A, Schwartz H, Sagi‐Assif O, Meshel T, Izraely S, Menachem SB, et al. Astrocytes facilitate melanoma brain metastasis via secretion of IL‐23. J Pathol. 2015;236(1):116–27.CrossRefPubMedGoogle Scholar
  34. 34.
    Le DM, Besson A, Fogg DK, Choi K-S, Waisman DM, Goodyer CG, et al. Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator–plasmin cascade. J Neurosci. 2003;23:4034–43.PubMedGoogle Scholar
  35. 35.
    Kim S-J, Kim J-S, Park ES, Lee J-S, Lin Q, Langley RR, et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia. 2011;13:286–98.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen W, Wang D, Du X, He Y, Chen S, Shao Q, et al. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol. 2015;32:1–13.CrossRefGoogle Scholar
  37. 37.
    Lin Q, Balasubramanian K, Fan D, Kim S-J, Guo L, Wang H, et al. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia. 2010;12:748–54.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kim SW, Choi HJ, Lee H-J, He J, Wu Q, Langley RR, et al. Role of the endothelin axis in astrocyte-and endothelial cell-mediated chemoprotection of cancer cells. Neuro-Oncology. 2014;16:1585–98.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC. Interleukin‐6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate. 2000;42:239–42.CrossRefPubMedGoogle Scholar
  40. 40.
    Knüpfer H, Preiß R. Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res Treat. 2007;102:129–35.CrossRefPubMedGoogle Scholar
  41. 41.
    Abrey LE, Christodoulou C. Temozolomide for treating brain metastases: seminars in oncology. Elsevier. 2001;28:34–42.Google Scholar
  42. 42.
    Agarwala SS, Kirkwood JM. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist. 2000;5:144–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Gerstner ER, Fine RL. Increased permeability of the blood–brain barrier to chemotherapy in metastatic brain tumors: establishing a treatment paradigm. J Clin Oncol. 2007;25:2306–12.CrossRefPubMedGoogle Scholar
  44. 44.
    Doolittle ND, Muldoon LL, Culp AY, Neuwelt EA. Chapter seven—delivery of chemotherapeutics across the blood–brain barrier: challenges and advances. In: Thomas PD, editors. Advances in pharmacology. Academic Press, 2014, Volume 71, pp 203–243.Google Scholar
  45. 45.
    Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8:361–75.CrossRefPubMedGoogle Scholar
  46. 46.
    Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol. 2006;10:133.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Grütz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol. 2005;77:3–15.PubMedGoogle Scholar
  48. 48.
    Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia. 2009;57:1458–67.CrossRefPubMedGoogle Scholar
  49. 49.
    Hishii M, Nitta T, Ishida H, Ebato M, Kurosu A, Yagita H, et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery. 1995;37:1160–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Fujita M, Zhu X, Sasaki K, Ueda R, Low KL, Pollack IF, et al. Inhibition of stat3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol. 2008;180:2089–98.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee J, Borboa AK, Baird A, Eliceiri BP. Non-invasive quantification of brain tumor-induced astrogliosis. BMC Neurosci. 2011;12:9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Amanda L. Placone
    • 1
    • 2
  • Alfredo Quiñones-Hinojosa
    • 3
    • 4
  • Peter C. Searson
    • 1
    • 2
    • 4
  1. 1.Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of OncologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations