Tumor Biology

, Volume 37, Issue 3, pp 4035–4040 | Cite as

Leu/Val SNP polymorphism of CYP1B1 and risk of uterine leiomyoma in a Black population

Original Article
  • 127 Downloads

Abstract

Uterine leiomyoma (UL) is the most commonly occurring benign tumor that affects women of reproductive ages. Studies strongly suggest that ULs are hormonally dependent and that genes acting in estrogen metabolism might be involved in their development. The focus of this case–control study was to determine whether the Leucine432Valine single-nucleotide polymorphism (SNP) in the gene encoding cytochrome P450 1B1 (CYP1B1) was associated with an increased risk of UL in Black Barbadian women. The investigation comprised 37 women clinically diagnosed with UL and 52 controls. The CYP1B1 Leu432Val polymorphism (Leu/Val) was analyzed using the polymerase chain reaction–restriction fragment length polymorphism method. The homozygous Valine432 variant (Val/Val) was predominant in both cases and controls for this population (89 and 83 %, respectively). The odds ratio for risk of developing the disease was 1.33, but this was not statistically significant. We discuss a possible protective function for CYP1B1 based on the high prevalence of this mutant SNP and its lack of association with UL.

Keywords

Uterine leiomyoma CYP1B1 Polymorphism Estrogen Single-nucleotide polymorphism 

Notes

Acknowledgments

The authors thank the following medical doctors: Dr Carlos Chase, Dr Delores Lewis, and Dr Tracey Archer of the Queen Elizabeth Hospital Barbados and the Barbados Family Planning Clinic, respectively.

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This work was supported by the University of the West Indies, Cave Hill Campus (Campus Research Awards).

Conflicts of interest

None

References

  1. 1.
    Buttram Jr VC, Reiter R. Uterine leiomyomata: etiology, symptomatology, and management. Fertil Steril. 1981;36(4):433–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94:435–38.CrossRefPubMedGoogle Scholar
  3. 3.
    Stewart EA. Uterine fibroids. Lancet. 2001;357(9252):293–98.CrossRefPubMedGoogle Scholar
  4. 4.
    Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in Black and White women: ultrasound evidence. Am J Obstet Gynecol. 2003;188(1):100–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Peddada SD, Laughlin SK, Miner K, Guyon JP, Haneke K, Vahdat HL, et al. Growth of uterine leiomyomata among premenopausal black and white women. Proc Natl Acad Sci U S A. 2008;105(50):19887–92.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Townsend DE, Sparkes RS, Baluda MC, McClelland G. Unicellular histogenesis of uterine leiomyomas as determined by electrophoresis by glucose-6-phosphate dehydrogenase. Am J Obstet Gynecol. 1970;107(8):1168–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Marshall LM, Spielberg B, Barbieri RL, Goldman MB, Manson JE, Colditz GA. Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol. 1997;90(6):967–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Wechter ME, Stewart EA, Myers ER, Kho RM, Wu JM. Leiomyoma-related hospitalization and surgery: prevalence and predicted growth based on population trends. Am J Obstet Gynecol. 2011;205(5):492. e1-492 e5.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wise LA, Palmer JR, Harlow BL, Spiegelman D, Stewart EA, Adams-Campbell LL, et al. Reproductive factors, hormonal contraception, and risk of uterine leiomyomata in African-American women: a prospective study. Am J Epidemiol. 2004;159(2):113–23.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huyck KL, Panhuysen CIM, Cuenco KT, Zhang J, Goldhammer H, Jones ES, et al. The impact of race as a risk factor for symptom severity and age at diagnosis of uterine leiomyomata among affected sisters. Am J Obstet Gynecol. 2008;198(2):168. e1-9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kjerulff K, Langenberg P, Seidman JD, Stolley PD, Guzinski GM. Uterine leiomyomas. Racial differences in severity, symptoms and age at diagnosis. J Reprod Med. 1996;41(7):483–90.PubMedGoogle Scholar
  12. 12.
    Farquhar CM, Steiner CA. Hysterectomy rates in the United States 1990–1997. Obstet Gynecol. 2002;99(2):229–34.PubMedGoogle Scholar
  13. 13.
    Whiteman MK, Hills SD, Jamieson DJ, Morrow B, Podogornik MN, Brett KM, et al. Inpatient hysterectomy surveillance in the United States, 2000–2004. Am J Obstet Gynecol. 2008;198(1):34. e1-34 e7.CrossRefPubMedGoogle Scholar
  14. 14.
    Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost uterine leiomyomata in the United States. Am J Obstet Gynecol. 2013;206(211):1–9.Google Scholar
  15. 15.
    Alleyne AT, Austin S, Williams A. Distribution of CYP17α polymorphism and selected physiochemical factors of uterine leiomyoma in Barbados. Metagene. 2014;2:358–65.Google Scholar
  16. 16.
    Fletcher H, Wharfe G, Williams NP, Gordon-Strachan G, Pedican M, Brooks A. Venous thromboembolism as a complication of uterine fibroids: a retrospective descriptive study. J Obstet Gynecol. 2009;29(8):732–36.CrossRefGoogle Scholar
  17. 17.
    Uche-Nwachi E, Odekunle A, Welch M, Bowleg D, Cardron B, Gaebolae K, et al. The incidence of fibromyoma and polycystic ovary syndrome in women in Trinidad (2000–2003). Online J Biol Sci. 2009;9(4):86–92.CrossRefGoogle Scholar
  18. 18.
    Faerstein E, Szklo M, Rosenshein N. Risk factors for uterine leiomyoma: a practice-based case–control study. I. African-American heritage, reproductive history, body size, and smoking. Am J Epidemiol. 2001;153(1):1–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Ross RK, Pike MC, Vessey MP, Bull D, Yeates D, Casagrande JT. Risk factors for uterine fibroids: reduced risk associated with oral contraceptives. Br Med J. 1986;293(6543):359–62.CrossRefGoogle Scholar
  20. 20.
    Cook JD, Walker CL. Treatment strategies for uterine leiomyoma: the role of hormonal modulation. Semin Reprod Med. 2004;22(2):105–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Schwartz SM, Marshall LM, Baird DD. Epidemiologic contributions to understanding the etiology of uterine leiomyomata. Environ Health Perspect. 2000;108 Suppl 5:821–27.CrossRefPubMedGoogle Scholar
  22. 22.
    Al-Hendy A, Salama SA. Ethnic distribution of estrogen receptor-α polymorphism is associated with a higher prevalence of uterine leiomyomas in black Americans. Fertil Steril. 2006;86(3):686–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Amant F, Dorfling CM, de Brabanter J, Vandewalle J, Vergote I, Lindebique BJ, et al. A possible role of the cytochrome P450c17α gene (CYP17) polymorphism in the pathobiology of uterine leiomyomas from black South African women: a pilot study. Acta Obstet Gynecol Scand. 2004;83(3):234–39.PubMedGoogle Scholar
  24. 24.
    Vieira LCE, Esperança LC, Gomes MTV, Castro RA, de Souza NCN, da Silva IDCG, et al. Association of the CYP17 gene polymorphism with risk for uterine leiomyoma in Brazilian women. Gynecol Endocrinol. 2008;24(7):373–77.CrossRefPubMedGoogle Scholar
  25. 25.
    Rosa FE, Canevari RA, Ambrosio EP, Cirilo PDR, Pontes A, Rainho CA, et al. Polymorphisms of CYP17A1, CYP19, and androgen in Brazilian women with uterine leiomyomas. Clin Chem Lab Med. 2008;46(6):814–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Liehr JG, Ricci MJ, Jefcoate CR, Hannigan EV, Hokanson JA, Zhu BT. 4-Hydroxylation of estradiol by human uterine myometrium and myoma microsomes: implications for the mechanism of uterine tumorigenesis. Proc Natl Acad Sci U S A. 1995;92(20):9220–24.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol. 1991;4(4):391–407.CrossRefPubMedGoogle Scholar
  28. 28.
    Shimada T, Gillam EMJ, Sutter TR, Strickland PT, Guengerich FP, Yamzaki H. Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab Dispos. 1997;25(5):617–22.PubMedGoogle Scholar
  29. 29.
    Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci U S A. 1996;93(18):9776–81.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bailey LR, Roodi N, Dupont WD, Parl FF. Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer. Cancer Res. 1998;58(22):5038–41.PubMedGoogle Scholar
  31. 31.
    Salimi S, Khodamian M, Narooie-Nejad M, Hajiadeh A, Fazeli K, Namazi L, et al. Association of polymorphisms and haplotypes in the cytochrome P450 1B1 gene with uterine leiomyoma: a case control study. Biomed Rep. 2015;3(2):201–6.PubMedGoogle Scholar
  32. 32.
    Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997;6(4):641–47.CrossRefPubMedGoogle Scholar
  33. 33.
    De Vivo I, Hankinson SE, Li L, Colditz GA, Hunter DJ. Association of CYP1B1 polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11(5):489–92.PubMedGoogle Scholar
  34. 34.
    Teng Y, Caiyun H, Xiaohang Z, Li X. Catechol-O-methyltransferase and cytochrome P-450 1B1 polymorphisms and endometrial cancer risk: a meta-analysis. Int J Gynecol Cancer. 2013;23(3):422–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012. doi: 10.1186/1471-2105-13-134.Google Scholar
  36. 36.
    Tang YM, Green BL, Chen GF, Thompson PA, Lang NP, Shinde A, et al. Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans, Caucasians and Chinese; estradiol hydroxylase activity; and distribution in prostate cancer cases and controls. Pharmacogenetics. 2000;10(9):761–66.CrossRefPubMedGoogle Scholar
  37. 37.
    McCann SE, Wactawski-Wende J, Kufel K, Olson J, Ovando B, Kadlubar SN, et al. Changes in 2-hydroxyestrone and 16α-hydroxyestrone metabolism with flaxseed consumption: modification by COMT and CYP1B1 genotype. Cancer Epidemiol Biomark Prev. 2007;16(2):256–62.CrossRefGoogle Scholar
  38. 38.
    Dupont WD, Plummer WD. PS power and sample size program available for free on the Internet. Control Clin Trials. 1997;18(3):274.CrossRefGoogle Scholar
  39. 39.
    Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Ye Y, Cheng X, Luo H, Liu L, Li Y, Hou Y. CYP1A1 and CYP1B1 genetic polymorphisms and uterine leiomyoma risk in Chinese women. J Assist Reprod Genet. 2008;25(8):389–94.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tsuchiya Y, Wo YP, Stewart J, Hawkins AL, Griffin CA, Sutter TR, et al. Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res. 2004;64(9):3119–25.CrossRefPubMedGoogle Scholar
  42. 42.
    Andersen J, DyReyes VM, Barbieri RL, Coachman DM, Miksicek RJ. Leiomyoma primary cultures have elevated transcriptional response to estrogen compared with autologous myometrial cultures. J Soc Gynecol Investig. 1995;2(3):542–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Li DN, Seidel A, Pritchard MP, Wolf CR, Friedberg T. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics. 2000;10(4):343–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Sutter TR, Tang YM, Hayes CL, Won YP, Jabsll EW, Lill X, et al. Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J Biol Chem. 1994;269(18):13092–99.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Biological and Chemical Sciences, Faculty of Science and TechnologyUniversity of the West Indies Cave Hill CampusBridgetownBarbados

Personalised recommendations