Tumor Biology

, Volume 37, Issue 3, pp 3957–3967 | Cite as

The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1

  • Yanhui Jiang
  • Zhihua Li
  • Shangyou Zheng
  • Huimou Chen
  • Xiaohui Zhao
  • Wenchao Gao
  • Zhuofei Bi
  • Kaiyun You
  • Yingxue Wang
  • Wenzhu Li
  • Liting Li
  • Yimin Liu
  • Rufu Chen
Original Article


Pancreatic ductal adenocarcinoma (PDAC) is seriously resistant to radiotherapy and the mechanism is largely unknown. HOX transcript antisense intergenic RNA (HOTAIR) is overexpressed in PDAC. However, the function of HOTAIR has never been related to the radiosensitivity of PDAC. In this present study, the expression of HOTAIR in the PDAC cell lines and tissues was measured by quantitative real-time PCR (qRT-PCR), and the association between HOTAIR expression levels and X-ray treatment in PDAC cell lines was investigated. Additionally, the influence of HOTAIR knockdown on radiosensitivity, proliferation, and apoptosis of PDAC cells after radiation was evaluated by colony formation assays, Cell Counting Kit-8 (CCK-8) assays, and flow cytometry, respectively. Furthermore, the correlation between HOTAIR and Wnt inhibitory factor 1 (WIF-1) expression in PDAC cell lines and tissues was studied to assess the role of HOTAIR and WIF-1 in the radiosensitivity of PDAC. The results confirmed that HOTAIR expression was significantly increased in the PDAC cell lines and tissues (n = 90) compared with human normal pancreatic ductal epithelial cell line (HPDE) and matched adjacent normal tissues (n = 90). Functionally, HOTAIR knockdown enhanced the radiosensitivity of PDAC cells, reduced the proliferation, and increased the apoptosis of cells after radiation. And HOTAIR silencing increased the expression of WIF-1. Furthermore, the overexpression of WIF-1 revealed that HOTAIR modulated the radiosensitivity of PDAC cells by regulating the expression of WIF-1. These data reveals that HOTAIR can affect the radiosensitivity of PDAC cells partly via regulating the expression of WIF-1, and HOTAIR-WIF-1 axis is a potential target for PDAC radiotherapy.


Pancreatic ductal adenocarcinoma Radiosensitivity HOTAIR Wnt inhibitory factor 1 


Authors’ contributions

YML and RFC designed the experiments and analyzed the raw data. YHJ and ZHL performed the experiments, disposed and analyzed the data, and wrote this manuscript. SYZ, HMC, XHZ, WCG, ZFB, KYY, YXW, WZL, and LTL were involved in the experiments and analysis of data. All the authors have read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest


Statement of informed consent

All patients provided informed written consent before study enrollment.

Supplementary material

13277_2015_4234_MOESM1_ESM.docx (2.8 mb)
ESM 1 (DOCX 2843 kb)


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–57.CrossRefPubMedGoogle Scholar
  3. 3.
    Bond-Smith G, Banga N, Hammond TM, Imber CJ. Pancreatic adenocarcinoma. BMJ. 2012;344, e2476.CrossRefPubMedGoogle Scholar
  4. 4.
    Feliu J, Borrega P, Leon A, Lopez-Gomez L, Lopez M, Castro J, et al. Phase II study of a fixed dose-rate infusion of gemcitabine associated with erlotinib in advanced pancreatic cancer. Cancer Chemother Pharmacol. 2011;67:215–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494–504.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71:6320–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 2011;39:2119–28.CrossRefPubMedGoogle Scholar
  14. 14.
    Nakagawa T, Endo H, Yokoyama M, Abe J, Tamai K, Tanaka N, et al. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun. 2013;436:319–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013;32:1616–25.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu Z, Sun M, Lu K, Liu J, Zhang M, Wu W, et al. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS One. 2013;8, e77293.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Padua AC, Fonseca AS, Muys BR, de Barros ELBR, Burger MC, de Souza JE, et al. Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells. 2013;31:2827–32.CrossRefGoogle Scholar
  18. 18.
    Jing L, Yuan W, Ruofan D, Jinjin Y, Haifeng Q. HOTAIR enhanced aggressive biological behaviors and induced radio-resistance via inhibiting p21 in cervical cancer. Tumour Biol. 2015;36:3611–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen J, Shen Z, Zheng Y, Wang S, Mao W. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating beta-catenin mediated by upregulated HOTAIR. Int J Clin Exp Pathol. 2015;8:7878–86.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ge XS, Ma HJ, Zheng XH, Ruan HL, Liao XY, Xue WQ, et al. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci. 2013;104:1675–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Yan TH, Lu SW, Huang YQ, Que GB, Chen JH, Chen YP, et al. Upregulation of the long noncoding RNA HOTAIR predicts recurrence in stage Ta/T1 bladder cancer. Tumour Biol. 2014;35:10249–57.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang G, Li Z, Zhao Q, Zhu Y, Zhao C, Li X, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/beta-catenin signaling pathway. Oncol Rep. 2014;31:1839–45.PubMedGoogle Scholar
  23. 23.
    Burris HR, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.PubMedGoogle Scholar
  24. 24.
    Berlin JD, Catalano P, Thomas JP, Kugler JW, Haller DG, Benson AR. Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol. 2002;20:3270–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea MD, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–72.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li Z, Zhao X, Zhou Y, Liu Y, Zhou Q, Ye H, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J Transl Med. 2015;13:84.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics. 2011;6:539–43.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409–19.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet. 2010;19:R152–61.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Marchese FP, Huarte M. Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics. 2014;9:21–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Zheng CP, Han L, Hou WJ, Tang J, Wen YH, Fu R, et al. MicroRNA-9 suppresses the sensitivity of CNE2 cells to ultraviolet radiation. Mol Med Rep. 2015;12:2367–73.PubMedGoogle Scholar
  32. 32.
    Huang S, Li XQ, Chen X, Che SM, Chen W, Zhang XZ. Inhibition of microRNA-21 increases radiosensitivity of esophageal cancer cells through phosphatase and tensin homolog deleted on chromosome 10 activation. Dis Esophagus. 2013;26:823–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang X, Shi H, Lin S, Ba M, Cui S. MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol Rep. 2015.Google Scholar
  34. 34.
    Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 2013;145:1133–43.CrossRefPubMedGoogle Scholar
  35. 35.
    Stratford JK, Bentrem DJ, Anderson JM, Fan C, Volmar KA, Marron JS, et al. A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 2010;7, e1000307.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 2008;55:2016–27.PubMedGoogle Scholar
  37. 37.
    Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17:500–3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med. 2015;12:1–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhou X, Chen J, Tang W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim Biophys Sin (Shanghai). 2014;46:1011–5.CrossRefGoogle Scholar
  40. 40.
    Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53:88–100.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhou C, Ye L, Jiang C, Bai J, Chi Y, Zhang H. Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1alpha activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumour Biol. 2015.Google Scholar
  42. 42.
    Moeller BJ, Dewhirst MW. Raising the bar: how HIF-1 helps determine tumor radiosensitivity. Cell Cycle. 2004;3:1107–10.CrossRefPubMedGoogle Scholar
  43. 43.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.CrossRefPubMedGoogle Scholar
  44. 44.
    Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol. 2003;201:204–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Gui S, Yuan G, Wang L, Zhou L, Xue Y, Yu Y, et al. Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 beta cells via activation of IRS2/PI3K signaling. J Cell Biochem. 2013;114:1488–97.CrossRefPubMedGoogle Scholar
  46. 46.
    Cui J, Jiang W, Wang S, Wang L, Xie K. Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des. 2012;18:2464–71.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang Y, Morris JT, Yan W, Schofield HK, Gurney A, Simeone DM, et al. Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 2013;73:4909–22.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang L, Heidt DG, Lee CJ, Yang H, Logsdon CD, Zhang L, et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell. 2009;15:207–19.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lee BB, Lee EJ, Jung EH, Chun HK, Chang DK, Song SY, et al. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res. 2009;15:6185–91.CrossRefPubMedGoogle Scholar
  50. 50.
    Taniguchi H, Yamamoto H, Hirata T, Miyamoto N, Oki M, Nosho K, et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene. 2005;24:7946–52.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Radiotherapy, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
  2. 2.Department of Medical Oncology, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
  3. 3.Department of Pancreaticobiliary Surgery, Hepatobiliary Surgery, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina

Personalised recommendations