Advertisement

Tumor Biology

, Volume 37, Issue 4, pp 4655–4663 | Cite as

Overexpression of HPV16 E6/E7 mediated HIF-1α upregulation of GLUT1 expression in lung cancer cells

  • Rong Fan
  • Wei-Jian Hou
  • Yu-Jie Zhao
  • Shu-Li Liu
  • Xue-Shan Qiu
  • En-Hua Wang
  • Guang-Ping Wu
Original Article

Abstract

High-risk human papillomavirus (HPV) infection may play an important role in non-small cell lung carcinoma (NSCLC) development. However, some recent studies have proved that it was not directly associated with lung cancer. The aim of this study was to evaluate the underlying molecular mechanism that HPV16 regulate the expression of GLUT1 and may promote the development of lung cancer. HPV16, HIF-1α, and GLUT1 were detected in pleural effusions of patients with lung cancer (n = 95) and with benign lung disease (n = 55) by immunocytochemistry. Western blotting and qRT-PCR were used to detect the expression chances of HPV16 E6/E7, HIF-1α, and GLUT1 in lung cancer cells. HPV16, HIF-1α, and GLUT1 were significantly more likely to be expressed in the malignant group than in the benign group as detected by immunocytochemistry (ICC), and HIF-1α was significantly correlated with HPV16 or GLUT1 in the malignant group (P < 0.01). Expression changes of E6 and E7 significantly promoted the protein expression of HIF-1α, the expression of both protein and mRNA of GLUT1, but had no effect on the expression of HIF-1α mRNA in lung cancer cells. After inhibition of HIF-1α, it obviously downregulated the expression of both protein and mRNA of GLUT1 in lung cancer cells. E6 and E7 regulated the expression of GLUT1 may be due to the mediation of HIF-1α in lung cancer cells. These results suggest that both E6 and E7 play the important role in the regulation of Warburg effect and may be a valuable therapeutic target for HPV-related cancer.

Keywords

Human papillomavirus (HPV) Lung cancer Hypoxia-inducible factor 1 Glucose transporter 1 Cytopathology 

Abbreviations

HPV

Human papillomaviruses

qRT-PCR

Quantitative real-time reverse transcriptase-polymerase chain reaction

HIF-1α

Hypoxia-inducible factor 1α

GLUT1

Glucose transporter 1

NSCLC

Non-small cell lung carcinoma

hTERT

Human telomerase reverse transcriptase

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China to Guang-Ping Wu, Grant No. 81171650.

Compliance with ethical standards

The study was conducted according to the guidelines of the institutional review boards at the First Affiliated Hospital of China Medical University; we have obtained internal review board approval and/or patients’ informed consent for this study.

Conflicts of interest

None.

Supplementary material

13277_2015_4221_Fig6_ESM.gif (103 kb)
Fig. S1A–B

(GIF 102 kb)

13277_2015_4221_Fig7_ESM.gif (113 kb)
Fig. S1A–B

(GIF 102 kb)

13277_2015_4221_MOESM1_ESM.tif (2.5 mb)
High resolution image (TIFF 2552 kb)
13277_2015_4221_MOESM2_ESM.tif (2.6 mb)
High resolution image (TIFF 2612 kb)

References

  1. 1.
    Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 1989;8(12):3905–10.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Syrjänen KJ. Condylomatous changes in neoplastic bronchial epithelium. Report of a case. Respiration. 1979;38(5):299–304.CrossRefPubMedGoogle Scholar
  3. 3.
    Ciotti M, Giuliani L, Ambrogi V, Ronci C, Benedetto A, Mineo TC, et al. Detection and expression of human papillomavirus oncogenes in non-small cell lung cancer. Oncol Rep. 2006;16(1):183–9.PubMedGoogle Scholar
  4. 4.
    Wang Y, Wang A, Jiang R, Pan H, Huang B, Lu Y, et al. Human papillomavirus type 16 and 18 infection is associated with lung cancer patients from the central part of China. Oncol Rep. 2008;20(2):333–9.PubMedGoogle Scholar
  5. 5.
    Srinivasan M, Taioli E, Ragin CC. Human papillomavirus type 16 and 18 in primary lung cancers—a meta-analysis. Carcinogenesis. 2009;30(10):1722–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Baba M, Castillo A, Koriyama C, Yanagi M, Matsumoto H, Natsugoe S, et al. Human papillomavirus is frequently detected in gefitinib-responsive lung adenocarcinomas. Oncol Rep. 2010;23(4):1085–92.PubMedGoogle Scholar
  7. 7.
    Aguayo F, Anwar M, Koriyama C, Castillo A, Sun Q, Morewaya J, et al. Human papillomavirus-16 presence and physical status in lung carcinomas from Asia. Infect Agent Cancer. 2010;5:20–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang J, Wang T, Han M, Yang ZH, Liu LX, Chen Y, et al. Variation of human papillomavirus 16 in cervical and lung cancers in Sichuan, China. Acta Virol. 2010;54(4):247–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Joh J, Jenson AB, Moore GD, Rezazedeh A, Slone SP, Ghim SJ, et al. Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV) in non small cell lung cancer. Exp Mol Pathol. 2010;89(3):222–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Krikelis D, Tzimagiorgis G, Georgiou E, Destouni C, Agorastos T, Haitoglou C, et al. Frequent presence of incomplete HPV16 E7 ORFs in lung carcinomas: memories of viral infection. J Clin Virol. 2010;49(3):169–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng YW, Wu MF, Wang J, Yeh KT, Goan YG, Chiou HL, et al. Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation. Cancer Res. 2007;67(22):10686–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Cheng YW, Wu TC, Chen CY, Chou MC, Ko JL, Lee H. Human telomerase reverse transcriptase activated by E6 oncoprotein is required for human papillomavirus-16/18-infected lung tumorigenesis. Clin Cancer Res. 2008;14(22):7173–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Tung MC, Wu HH, Cheng YW, Wang L, Chen CY, Yeh SD, et al. Association of epidermal growth factor receptor mutations with human papillomavirus 16/18 E6 oncoprotein expression in non-small cell lung cancer. Cancer. 2013;119(18):3367–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Koshiol J, Rotunno M, Gillison ML, Van Doorn LJ, Chaturvedi AK, Tarantini L, et al. Assessment of human papillomavirus in lung tumor tissue. J Natl Cancer Inst. 2011;103(6):501–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang E, Feng X, Liu F, Zhang P, Liang J, Tang X. Roles of PI3K/Akt and c-Jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells. PLoS One. 2014;9(7):e103440.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhai K, Ding J, Shi HZ. HPV and lung cancer risk: a meta-analysis. J Clin Virol. 2015;63:84–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Li G, He L, Zhang E, Shi J, Zhang Q, Le AD, et al. Overexpression of human papillomavirus (HPV) type 16 oncoproteins promotes angiogenesis via enhancing HIF-1α and VEGF expression in non-small cell lung cancer cells. Cancer Lett. 2011;311(2):160–70.CrossRefPubMedGoogle Scholar
  18. 18.
    Bodily JM, Mehta KP, Laimins LA. Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 2011;71(3):1187–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 2001;276(12):9519–25.CrossRefPubMedGoogle Scholar
  20. 20.
    Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem. 2001;276(46):43407–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Hu H, Takano N, Xiang L, Gilkes DM, Luo W, Semenza GL. Hypoxia-inducible factors enhance glutamate signaling in cancer cells. Oncotarget. 2014;5(19):8853–68.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kihira Y, Yamano N, Izawa-Ishizawa Y, Ishizawa K, Ikeda Y, Tsuchiya K, et al. Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1α in adipocytes. Int J Biochem Cell Biol. 2011;43(11):1602–11.CrossRefPubMedGoogle Scholar
  23. 23.
    Ding DF, Li XF, Xu H, Wang Z, Liang QQ, Li CG, et al. Mechanism of resveratrol on the promotion of induced pluripotent stem cells. J Integr Med. 2013;11(6):389–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang LN, Wang Y, Lu Y, Yin ZF, Zhang YH, Aslanidi GV, et al. Pristimerin enhances recombinant adeno-associated virus vector-mediated transgene expression in human cell lines in vitro and murine hepatocytes in vivo. J Integr Med. 2014;12(1):20–34.CrossRefPubMedGoogle Scholar
  25. 25.
    Gao G, Smith DI. Mate-pair sequencing as a powerful clinical tool for the characterization of cancers with a DNA viral etiology. Viruses. 2015;7(8):4507–28.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hellner K, Münger K. Human papillomaviruses as therapeutic targets in human cancer. J Clin Oncol. 2011;29(13):1785–94.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rezazadeh A, Laber DA, Ghim SJ, Jenson AB, Kloecker G. The role of human papilloma virus in lung cancer: a review of the evidence. Am J Med Sci. 2009;338(1):64–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Storey R, Joh J, Kwon A, Jenson AB, Ghim SJ, Kloecker GH. Detection of immunoglobulin G against E7 of human papillomavirus in non-small-cell lung cancer. J Oncol. 2013;2013:240164.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fei Y, Yang J, Hsieh WC, Wu JY, Wu TC, Goan YG, et al. Different human papillomavirus 16/18 infection in Chinese non-small cell lung cancer patients living in Wuhan, China. Jpn J Clin Oncol. 2006;36(5):274–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Porcel JM, Gasol A, Bielsa S, Civit C, Light RW, Salud A. Clinical features and survival of lung cancer patients with pleural effusions. Respirology. 2015;20(4):654–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Marel M, Stastny B, Melínová L, Svandová E, Light RW. Diagnosis of pleural effusions. Experience with clinical studies, 1986 to 1990. Chest. 1995;107(6):1598–603.CrossRefPubMedGoogle Scholar
  32. 32.
    Wu GP, Zhang SS, Fang CQ, Liu SL, Wang EH. Immunocytochemical panel for distinguishing carcinoma cells from reactive mesothelial cells in pleural effusions. Cytopathology. 2008;19(4):212–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang E, Zhang C, Polavaram N, Liu F, Wu G, Schroeder MA, et al. The role of factor inhibiting HIF (FIH-1) in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme. PLoS One. 2014;9(1):e86102.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998;8(5):588–94.CrossRefPubMedGoogle Scholar
  37. 37.
    Yasuda S, Arii S, Mori A, Isobe N, Yang W, Oe H, et al. Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance. J Hepatol. 2004;40(1):117–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1αlpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485–90.CrossRefPubMedGoogle Scholar
  39. 39.
    Guo Y, Meng X, Ma J, Zheng Y, Wang Q, Wang Y, et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction. Int J Mol Sci. 2014;15(5):7974–86.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Rong Fan
    • 1
  • Wei-Jian Hou
    • 2
  • Yu-Jie Zhao
    • 3
  • Shu-Li Liu
    • 1
  • Xue-Shan Qiu
    • 1
  • En-Hua Wang
    • 1
  • Guang-Ping Wu
    • 1
  1. 1.Department of Pathology, The First Affiliated Hospital and College of Basic Medical SciencesChina Medical UniversityShenyangChina
  2. 2.Department of Tissue Engineering, College of Basic Medical SciencesChina Medical UniversityShenyangChina
  3. 3.Center of Biochip, College of Basic Medical SciencesChina Medical UniversityShenyangChina

Personalised recommendations