Advertisement

Tumor Biology

, Volume 37, Issue 3, pp 3765–3774 | Cite as

CD41 and CD45 expression marks the angioformative initiation of neovascularisation in human haemangioblastoma

  • Dexuan Ma
  • Ying Wang
  • Guhong Du
  • Jingyun Yang
  • Qisheng Tang
  • Liangfu Zhou
Article

Abstract

The initiation and formation of haemangioblastoma (HB) neovascularisation remain unknown, with concomitant controversy on its cytological origin. We detected HB-derived specific haematopoietic progenitors identified by surface expression of CD41 and CD45, which are similar to human embryonic vasculogenesis. CD41/CD45 cells expressed mesodermal markers, including SCL, Flk1 and c-kit. CD41 also seemed to appear before CD45 on haematopoietic progenitors. In vitro analysis showed that the CD41+/CD45 subpopulation gave rise to occasional primitive erythroid activity and endothelial marker expression. Meanwhile, kinetic investigation of the CD41+/CD45+ subpopulation showed that some molecules, including SCL, Flk1 and c-kit, were involved in vascular formation. The CD45+/c-kit+ population that lacked primitive haematopoiesis came from CD41+ cells. Acquisition of CD45 expression by the haematopoietic progenitors was associated with advanced differentiation towards the vascular cell lineage. Taken together, the present data suggested that CD41 and CD45 expression marked the onset of HB neovascularisation and the stepwise development of the angioformative period. Our findings provide new insights into the mechanisms of HB neovascularisation and the underlying therapeutic targets of anti-vascular treatment.

Keywords

Haemangioblastomas Neovascularisation Vasculogenesis Angiogenesis Molecular characterization 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81172392) and the Shanghai Committee of Science and Technology (15411951800). The authors thank the Harvard Office of Technology Development of Harvard University for the human ES cell line (HuES-14) and Prof. Lei Xiao of Chinese Academy of Sciences for his technical assistance. Dr. Jingyun Yang’s research was supported by NIH/NIA R01AG036042 and the Illinois Department of Public Health.

Conflicts of interest

None

References

  1. 1.
    Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, et al. Von Hippel-Lindau disease. Lancet. 2003;361:2059–67.CrossRefPubMedGoogle Scholar
  2. 2.
    Hussein MR. Central nervous system capillary haemangioblastoma: the pathologist’s viewpoint. Int J Exp Pathol. 2007;88:311–24.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Conway JE, Chou D, Clatterbuck RE, Brem H, Long DM, Rigamonti D. Hemangioblastomas of the central nervous system in von Hippel-Lindau syndrome and sporadic disease. Neurosurgery. 2001;48:55–62. discussion 62–53.PubMedGoogle Scholar
  4. 4.
    Vortmeyer AO, Gnarra JR, Emmert-Buck MR, Katz D, Linehan WM, Oldfield EH, et al. Von Hippel-Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von Hippel-Lindau disease. Hum Pathol. 1997;28:540–3.CrossRefPubMedGoogle Scholar
  5. 5.
    Wizigmann-Voos S, Breier G, Risau W, Plate KH. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 1995;55:1358–64.PubMedGoogle Scholar
  6. 6.
    Vortmeyer AO, Frank S, Jeong SY, Yuan K, Ikejiri B, Lee YS, et al. Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease. Cancer Res. 2003;63:7051–5.PubMedGoogle Scholar
  7. 7.
    Park DM, Zhuang Z, Chen L, Szerlip N, Maric I, Li J, et al. Von Hippel-Lindau disease-associated hemangioblastomas are derived from embryologic multipotent cells. PLoS Med. 2007;4:e60.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Glasker S, Li J, Xia JB, Okamoto H, Zeng W, Lonser RR, et al. Hemangioblastomas share protein expression with embryonal hemangioblast progenitor cell. Cancer Res. 2006;66:4167–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Ma D, Zhang M, Chen L, Tang Q, Tang X, Mao Y, et al. Hemangioblastomas might derive from neoplastic transformation of neural stem cells/progenitors in the specific niche. Carcinogenesis. 2011;32:102–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Ma D, Zhu W, Zhang M, Ding X, Xu F, Hua W, et al. Identification of tumorigenic cells and implication of their aberrant differentiation in human hemangioblastomas. Cancer Biol Ther. 2011;12:727–36.CrossRefPubMedGoogle Scholar
  11. 11.
    Welten CM, Keats EC, Ang LC, Khan ZA. Hemangioblastoma stromal cells show committed stem cell phenotype. Can J Neurol Sci J Can Sci Neurol. 2012;39:821–7.CrossRefGoogle Scholar
  12. 12.
    Ishizawa K, Komori T, Hirose T. Stromal cells in hemangioblastoma: neuroectodermal differentiation and morphological similarities to ependymoma. Pathol Int. 2005;55:377–85.CrossRefPubMedGoogle Scholar
  13. 13.
    Robertson SM, Kennedy M, Shannon JM, Keller G. A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development. 2000;127:2447–59.PubMedGoogle Scholar
  14. 14.
    Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature. 1995;373:432–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Doyle LA, Fletcher CD. Peripheral hemangioblastoma: clinicopathologic characterization in a series of 22 cases. Am J Surg Pathol. 2014;38:119–27.CrossRefPubMedGoogle Scholar
  16. 16.
    Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468:829–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol. 2000;156:361–81.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Glasker S, Smith J, Raffeld M, Li J, Oldfield EH, Vortmeyer AO. VHL-deficient vasculogenesis in hemangioblastoma. Exp Mol Pathol. 2014;96:162–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhuang Z, Frerich JM, Huntoon K, Yang C, Merrill MJ, Abdullaev Z, et al. Tumor derived vasculogenesis in von Hippel-Lindau disease-associated tumors. Sci Rep. 2014;4:4102.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development. 1998;125:725–32.PubMedGoogle Scholar
  23. 23.
    Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386:488–93.CrossRefPubMedGoogle Scholar
  24. 24.
    Nakano T, Kodama H, Honjo T. In vitro development of primitive and definitive erythrocytes from different precursors. Science. 1996;272:722–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005;19:1129–55.CrossRefPubMedGoogle Scholar
  26. 26.
    Mitjavila-Garcia MT, Cailleret M, Godin I, Nogueira MM, Cohen-Solal K, Schiavon V, et al. Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development. 2002;129:2003–13.PubMedGoogle Scholar
  27. 27.
    Wang L, Menendez P, Cerdan C, Bhatia M. Hematopoietic development from human embryonic stem cell lines. Exp Hematol. 2005;33:987–96.CrossRefPubMedGoogle Scholar
  28. 28.
    Tavian M, Peault B. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005;49:243–50.CrossRefPubMedGoogle Scholar
  29. 29.
    Keller G, Kennedy M, Papayannopoulou T, Wiles MV. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol. 1993;13:473–86.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood. 2005;106:860–70.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003;102:906–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Debili N, Issaad C, Masse JM, Guichard J, Katz A, Breton-Gorius J, et al. Expression of CD34 and platelet glycoproteins during human megakaryocytic differentiation. Blood. 1992;80:3022–35.PubMedGoogle Scholar
  33. 33.
    Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood. 2007;109:2679–87.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Faloon P, Arentson E, Kazarov A, Deng CX, Porcher C, Orkin S, et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development. 2000;127:1931–41.PubMedGoogle Scholar
  35. 35.
    Aplan PD, Nakahara K, Orkin SH, Kirsch IR. The SCL gene product: a positive regulator of erythroid differentiation. EMBO J. 1992;11:4073–81.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Fuller GN, Scheithauer BW. The 2007 revised World Health Organization (WHO) classification of tumours of the central nervous system: newly codified entities. Brain Pathol. 2007;17:304–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Domingues PH, Teodosio C, Ortiz J, Sousa P, Otero A, Maillo A, et al. Immunophenotypic identification and characterization of tumor cells and infiltrating cell populations in meningiomas. Am J Pathol. 2012;181:1749–61.CrossRefPubMedGoogle Scholar
  38. 38.
    Green AR, DeLuca E, Begley CG. Antisense SCL suppresses self-renewal and enhances spontaneous erythroid differentiation of the human leukaemic cell line K562. EMBO J. 1991;10:4153–8.PubMedPubMedCentralGoogle Scholar
  39. 39.
    McIntyre A, Summersgill B, Grygalewicz B, Gillis AJ, Stoop J, van Gurp RJ, et al. Amplification and overexpression of the kit gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. Cancer Res. 2005;65:8085–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from a single adult stem cell. Nature. 2008;456:804–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Chou ST, Byrska-Bishop M, Tober JM, Yao Y, Vandorn D, Opalinska JB, et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109:17573–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Panagopoulos AT, Lancellotti CL, Veiga JC, de Aguiar PH, Colquhoun A. Expression of cell adhesion proteins and proteins related to angiogenesis and fatty acid metabolism in benign, atypical, and anaplastic meningiomas. J Neuro-Oncol. 2008;89:73–87.CrossRefGoogle Scholar
  43. 43.
    Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17:1359–70.CrossRefPubMedGoogle Scholar
  44. 44.
    Rumyantsev S. Hypothesis: towards the origin of cancer epidemics and pathogenesis. J Carcinog. 2010;9:2.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Dexuan Ma
    • 1
  • Ying Wang
    • 1
  • Guhong Du
    • 1
  • Jingyun Yang
    • 2
    • 3
  • Qisheng Tang
    • 1
  • Liangfu Zhou
    • 1
  1. 1.Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
  2. 2.Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoUSA
  3. 3.Department of Neurological SciencesRush University Medical CenterChicagoUSA

Personalised recommendations