Tumor Biology

, Volume 37, Issue 1, pp 23–27 | Cite as

DNA methylation and detection of cervical cancer and precancerous lesions using molecular methods

  • Sandra Mersakova
  • Marcela Nachajova
  • Peter Szepe
  • Petra Sumichrastova Kasajova
  • Erika Halasova


Cervical cancer is the third most common cancer disease affecting the female population, and a key factor in the development of the disease is the human papillomavirus infection (HPV). The disease is also impacted by epigenetic changes such as DNA methylation, which causes activation or exclusion of certain genes. The aim of our review is to summarize and compare the most common molecular methods for detection of methylated promoter regions in biomarkers occurring in cervical carcinoma and also show the importance of connections of HR-HPV testing with methylation analysis in patients with cervical intraepithelial neoplasia. Insight into genetic and epigenetic alterations associated with cervical cancer development can offer opportunities for the molecular biomarkers that can be useful for screening, diagnosis, and also as new ways of treatment of cervical cancer precursor lesions.


Methylation DNA HPV Cervical cancer 



This work was supported by the project “Molecular diagnostics of cervical cancer” (ITMS:26220220113), Comenius University Grants 303/2011, 242/2012, 287/2015, 121/2015, and the VEGA Grant 1/0271/12 as well as the APVV-0224-12 grant.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer. GLOBOCAN, 2008.Google Scholar
  2. 2.
    Sung LC, et al. Methylation markers for diagnosis of cervical cancer, Patent application publication, 2013.Google Scholar
  3. 3.
    Steenbergen R, Snijders P, Heideman D, et al. Clinical implications of (epi) genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer. 2014;14:395–405.CrossRefPubMedGoogle Scholar
  4. 4.
    Arbyn M, Roelens J, Cuschieri K, et al. The APTIMA HPV assay versus the Hybrid Caoture II test in triage of women with ASC-US or LSIL cervical cytology: a meta-analysis of the diagnostic accuracy. Int J Cancer. 2013;132(1):101–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Janusicova V, Mendelova A, Zubor P, et al. mRNA Expression in cervical specimens for determination of severe dysplasia or worse in HPV-16/18-positive squamous lesions. J Low Genit Tract Dis. 2014;18(3):273–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Fiolka R, Zubor P, Holubekova V, et al. Promoter hypermethylation of the tumor-suppresor genes RASSF1A, GSTP1 and CDH1 in endometrial cancer. Oncol Rep. 2013;30(6):2878–86.PubMedGoogle Scholar
  7. 7.
    Visnovsky J, Fiolka R, Kudela E, et al. Hypermethylation of selected genes in endometrial carcinogenesis. Neuro Endocrinol Lett. 2013;34(7):675–80.PubMedGoogle Scholar
  8. 8.
    Culbova M, Lasabova Z, Stanclova A, et al. Metylácia vybraných tumor-supresorových génov v benígnych a malígnych ovariálnych nádoroch. Article in Czech. Česká gynekologie. 2011;76(4):274–9.Google Scholar
  9. 9.
    Zubor P, Kajo K, Stanclova A, et al. Human epithelial growth factor receptor 2 polymorphism and risk of fibroadenoma. Eur J Cancer Prev. 2008;17(1):33–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Thomas LK, Bermejo JL, Vinokurova S, et al. Chromosomal gains and losses in human papillomavirus-associated neoplasia of the lower genital tract—a systematic review and meta-analysis. Eur J Cancer. 2014;50(1):85–98.CrossRefPubMedGoogle Scholar
  11. 11.
    Bierkens M, Krijqsman O, Wilting S, et al. Focal aberrations indicate EYA2 and hsa-miR-375 as oncogene and tumor suppressor in cervical carcinogenesis. Genes Chromosom Cancer. 2013;52(1):56–68.CrossRefPubMedGoogle Scholar
  12. 12.
    Kudela E, Farkasova A, Visnovsky J, et al. Amplification of 3q26 and 5p15 regions in cervical intraepithelial neoplasia. Acta Obstet Gynecol Scand. 2014;93(10):997–1002.CrossRefPubMedGoogle Scholar
  13. 13.
    Visnovsky J, Kudela E, Farkasova A, et al. Amplification of TERT and TERC genes in cervical intraepithelial neoplasia and cervical cancer. Neuro Endocrinol Lett. 2014;35(6):518–22.PubMedGoogle Scholar
  14. 14.
    Wajed SA, Laird PW, DeMeester TR, et al. DNA methylation: an alternative pathway to cancer. Ann Surg. 2001;234(1):10–20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Merlo A, Herman JG, Mao L, et al. 5’CpG Island methylation is associated with transcirptional silencing of the tumor suppressor gene p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1(7):686–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Mayrand MH, Duarte-Franco E, Rodrigues I, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N Engl J Med. 2007;357:1579–88.CrossRefPubMedGoogle Scholar
  17. 17.
    Szalmas A, Konya J. Epigenetic alterations in cervical carcinogenesis. Semin Cancer Biol. 2009;19(3):144–52.CrossRefPubMedGoogle Scholar
  18. 18.
    Herfs M, Yamamoto Y, Laury A, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci. 2012;109:10516–21.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wentzensen N, Sherman ME, Schiffman M, et al. Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the science. Gynecol Oncol. 2009;112(2):293–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Hesselink AT, Heideman DA, Steenbergen RD, et al. Combined promoter methylation analysis of CADM1 and MAL: an objective triage tool for high-risk human papillomavirus DNA-positive women. Clin Cancer Res. 2011;17:2459–65.CrossRefPubMedGoogle Scholar
  21. 21.
    Eijsink JJ, Lendvai Á, Deregowski V, et al. A four-gene methylation marker panel as triage test in hig-hrisk human papillomavirus positive patients. Int J Cancer. 2012;130(8):1861–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Bierkens M, Hesselink AT, Meijer CJ, et al. CADM1 and MAL promoter methylation levels in hrHPV-positive cervical scrapes increase proportional to degree and duration of underlying cervical disease. Int J Cancer. 2013;133:1293–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Fraga MF, Esteller M. DNA methylation: a profile of methods and applications. Biotechniques. 2002;33(4):6–49.Google Scholar
  24. 24.
    Swift- Scanlan T, Blackford A, Argani P, et al. Two-color quantitative multiplex methylation-specific PCR. Biotechniques. 2006;40(2):210–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Jiménez I, Cardeñosa EE, Suela SP, et al. Advantages of the high resolution melting in the detection of BRCA1 or BRCA2 mutation carriers. Clin Biochem. 2009;42:1572–6.CrossRefGoogle Scholar
  26. 26.
    Snellenberg S, De Strooper LM, Hesselink AT, et al. Development of a multiplex methylation-specific PCR as candidate triage test for women with an HPV-positive cervical scrape. BMC Cancer. 2012;12:551.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bian YS, Yan P, Osterheld MC, et al. Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfi te treatment and PCR- SSCP. Biotechniques. 2001;30(1):66–72.PubMedGoogle Scholar
  28. 28.
    Steenbergen RD, Kramer D, Braahuis BJ, et al. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst. 2004;96(4):294–305.CrossRefPubMedGoogle Scholar
  29. 29.
    Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25(12):2532–4.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rauch TA, Pfeifer GP. The MIRA method for DNA methylation analysis. Methods Mol Biol. 2009;507:65–75.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hyman ED. A new method of sequencing DNA. Anal Biochem. 1988;174:423–36.CrossRefPubMedGoogle Scholar
  32. 32.
    Mikeska T, Felsberg J, Hewitt CA, et al. Analysing DNA methylation using bisulphite pyrosequencing. Methods Mol Biol. 2011;791:33–53.CrossRefPubMedGoogle Scholar
  33. 33.
    Kyrgiou M, Koliopoulos G, Martin-Hirsch P, et al. Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and meta-analysis. Lancet. 2006;367(9509):489–98.CrossRefPubMedGoogle Scholar
  34. 34.
    Wright AA, Howitt BB, Myers AP, et al. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix. Cancer. 2013;119:3776–83.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kocken J, Helmerhorst TJ, Bekhof J, et al. Risk of recurrent high-grade cervical intraepithelial neoplasia after successful treatment: a long-term multi-cohort study. Lancet Oncol. 2011;12(5):441–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Arbyn M, Kyrgiou M, Simoens C, et al. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: meta-analysis. BMJ. 2008;337:284.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Sandra Mersakova
    • 1
  • Marcela Nachajova
    • 1
  • Peter Szepe
    • 2
  • Petra Sumichrastova Kasajova
    • 1
  • Erika Halasova
    • 3
  1. 1.Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine in MartinComenius University in BratislavaMartinSlovakia
  2. 2.Institute of Pathological Anatomy, Jessenius Faculty of Medicine in MartinComenius University in BratislavaMartinSlovakia
  3. 3.BioMed Martin—Division of Molecular Medicine, Jessenius Faculty of MedicineComenius UniversityMartinSlovakia

Personalised recommendations