Tumor Biology

, Volume 37, Issue 3, pp 3505–3514 | Cite as

IL-6/NOS2 inflammatory signals regulate MMP-9 and MMP-2 activity and disease outcome in nasopharyngeal carcinoma patients

  • Ahmed-Amine Zergoun
  • Abderezak Zebboudj
  • Sarah Leila Sellam
  • Nora Kariche
  • Djamel Djennaoui
  • Samir Ouraghi
  • Esma Kerboua
  • Zine-Charaf Amir-Tidadini
  • Dalia Chilla
  • Fatima Asselah
  • Chafia Touil-Boukoffa
  • Taha Merghoub
  • Mehdi Bourouba
Original Article


The role of nitric oxide (NO)· in the development of the metastatic properties of nasopharyngeal carcinoma (NPC) is not fully understood. Previous studies proposed that interleukin-6 (IL-6) would act as regulator of matrix metalloprotease activation in NPC. Recently, we showed that (NO)· was a critical mediator of tumor growth in patients. The aim of this study was to determine the implication of IL-6 in the progression of NPC pathology via metalloprotease (MMP) activation and their possible correlation with (NO)· production. We observed a significant increase in IL-6 and nitrite (NO2 ) synthesis in patients (n = 17) as well as a strong expression of IL-6 and nitric oxide synthase 2 (NOS2) in the analyzed tumors (n = 8). In patients’ plasma, a negative correlation associated IL-6 with circulating nitrites (r = −0.33). A negative correlation associated the H-scores of these signals in the tumors (r = −0.47). In patients’ plasma, nitrite synthesis was positively associated with MMP-9 activation (r = 0.45), pro-MMP-2 expression (r = 0.37), and negatively correlated with MMP-2 activation (r = −0.51). High nitrite levels was associated with better recurrence-free survival (RFS) (p = 0.02). Overall, our results suggest that the IL-6/NOS2 inflammatory signals are involved in the regulation of MMP-9- and MMP-2-dependent metastatic activity and that high circulating nitrite levels in NPC patients may constitute a prognostic predictor for survival.


IL-6 Nitric oxide MMP Nasopharyngeal carcinoma Inflammation 



This work was supported by the Agence Thématique de Recherche Scientifique en Santé (ATRSS, Algeria) and the MSKCC (Memorial Sloan-Kettering Cancer Center, New York, USA).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Tsao SW, Tsang CM, To KF, Lo KW. The role of Epstein-Barr virus in epithelial malignancies. J Pathol. 2015;235:323–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Khan G, Hashim MJ. Global burden of deaths from Epstein-Barr virus attributable malignancies 1990–2010. Infect Agent Cancer. 2014;9:38.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Feng BJ, Khyatti M, Ben Ayoub W, Dahmoul S, Ayad M, Maachi F, et al. Cannabis, tobacco and domestic fumes intake are associated with nasopharyngeal carcinoma in North Africa. Br J Cancer. 2009;101:1207–12.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bourouba M, Boukercha A, Zergoun AA, Zebboudj A, Elhadjan M, Djenaoui D, et al. Increased production of nitric oxide correlates with tumor growth in Algerian patients with nasopharyngeal carcinoma. Biomarkers. 2012;17:618–24.CrossRefPubMedGoogle Scholar
  5. 5.
    Bourouba M, Zergoun AA, Maffei JS, Chila D, Djennaoui D, Asselah F, et al. TNFalpha antagonization alters NOS2 dependent nasopharyngeal carcinoma tumor growth. Cytokine. 2015;74:157–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Gourzones C, Barjon C, Busson P. Host-tumor interactions in nasopharyngeal carcinomas. Semin Cancer Biol. 2012;22:127–36.CrossRefPubMedGoogle Scholar
  7. 7.
    Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439–52.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lan YY, Hsiao JR, Chang KC, Chang JS, Chen CW, Lai HC, et al. Epstein-Barr virus latent membrane protein 2A promotes invasion of nasopharyngeal carcinoma cells through ERK/Fra-1-mediated induction of matrix metalloproteinase 9. J Virol. 2012;86:6656–67.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Landskron G, la FM D, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. Int J Immunol Res. 2014;2014, 149185.Google Scholar
  10. 10.
    Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther. 2006;8 Suppl 2:S2.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen MF, Lin PY, Wu CF, Chen WC, Wu CT. IL-6 expression regulates tumorigenicity and correlates with prognosis in bladder cancer. PLoS One. 2013;8, e61901.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lukaszewicz M, Mroczko B, Szmitkowski M. Clinical significance of interleukin-6 (IL-6) as a prognostic factor of cancer disease. Pol Arch Med Wewn. 2007;117:247–51.PubMedGoogle Scholar
  13. 13.
    Liao Q, Zeng Z, Guo X, Li X, Wei F, Zhang W, et al. LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation. Oncogene. 2014;33:2098–109.CrossRefPubMedGoogle Scholar
  14. 14.
    Liao WC, Lin JT, Wu CY, Huang SP, Lin MT, Wu AS, et al. Serum interleukin-6 level but not genotype predicts survival after resection in stages II and III gastric carcinoma. Clin Cancer Res. 2008;14:428–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 2014;26:38–47.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lagares-Garcia JA, Moore RA, Collier B, Heggere M, Diaz F, Qian F. Nitric oxide synthase as a marker in colorectal carcinoma. Am Surg. 2001;67:709–13.PubMedGoogle Scholar
  17. 17.
    Grimm EA, Ellerhorst J, Tang CH, Ekmekcioglu S. Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis. Nitric Oxide. 2008;19:133–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, Ridnour LA, et al. Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest. 2010;120:3843–54.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6:521–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Pfeilschifter J, Eberhardt W, Beck KF. Regulation of gene expression by nitric oxide. Pflugers Arch. 2001;442:479–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol. 2001;166:3873–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, et al. Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem. 2000;275:36653–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Zaragoza C, Balbin M, Lopez-Otin C, Lamas S. Nitric oxide regulates matrix metalloprotease-13 expression and activity in endothelium. Kidney Int. 2002;61:804–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285–93.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19:34–41.CrossRefPubMedGoogle Scholar
  26. 26.
    Bond M, Fabunmi RP, Baker AH, Newby AC. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett. 1998;435:29–34.CrossRefPubMedGoogle Scholar
  27. 27.
    Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990;87:5578–82.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kroncke KD. Cysteine-Zn2+ complexes: unique molecular switches for inducible nitric oxide synthase-derived NO. FASEB J. 2001;15:2503–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Ridnour LA, Windhausen AN, Isenberg JS, Yeung N, Thomas DD, Vitek MP, et al. Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc Natl Acad Sci U S A. 2007;104:16898–903.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wong TS, Kwong DL, Sham JS, Wei WI, Kwong YL, Yuen AP. Clinicopathologic significance of plasma matrix metalloproteinase-2 and −9 levels in patients with undifferentiated nasopharyngeal carcinoma. Eur J Surg Oncol. 2004;30:560–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Liu Z, Li L, Yang Z, Luo W, Li X, Yang H, et al. Increased expression of MMP9 is correlated with poor prognosis of nasopharyngeal carcinoma. BMC Cancer. 2010;10:270.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Van Tubergen EA, Banerjee R, Liu M, Vander BR, Light E, Kuo S, et al. Inactivation or loss of TTP promotes invasion in head and neck cancer via transcript stabilization and secretion of MMP9, MMP2, and IL-6. Clin Cancer Res. 2013;19:1169–79.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sun W, Liu DB, Li WW, Zhang LL, Long GX, Wang JF, et al. Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9. Int J Oncol. 2014;44:1551–60.PubMedGoogle Scholar
  34. 34.
    Ma N, Kawanishi M, Hiraku Y, Murata M, Huang GW, Huang Y, et al. Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma: the relation to STAT3 activation and EGFR expression. Int J Cancer. 2008;122:2517–25.CrossRefPubMedGoogle Scholar
  35. 35.
    Touil-Boukoffa C, Bauvois B, Sanceau J, Hamrioui B, Wietzerbin J. Production of nitric oxide (NO) in human hydatidosis: relationship between nitrite production and interferon-gamma levels. Biochimie. 1998;80:739–44.CrossRefPubMedGoogle Scholar
  36. 36.
    Levidou G, Tzenou T, Kyrtsonis MC, Nikolaou E, Kavantzas N, Maltezas D, et al. The role of CXC-chemokine IL-8, IL-6 and CXCR2 receptor in lymphoplasmacytic lymphoma: correlations with microvascular characteristics and clinical features. Curr Angiogenesis. 2013;2:110–8.CrossRefGoogle Scholar
  37. 37.
    Porta C, De Amici M, Quaglini S, Paglino C, Tagliani F, Boncimino A, et al. Circulating interleukin-6 as a tumor marker for hepatocellular carcinoma. Ann Oncol. 2008;19:353–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26:54–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med. 2015;79:324–36.CrossRefPubMedGoogle Scholar
  40. 40.
    Tan EL, Selvaratnam G, Kananathan R, Sam CK. Quantification of Epstein-Barr virus DNA load, interleukin-6, interleukin-10, transforming growth factor-beta1 and stem cell factor in plasma of patients with nasopharyngeal carcinoma. BMC Cancer. 2006;6:227.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen H, Hutt-Fletcher L, Cao L, Hayward SD. A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein-Barr virus. J Virol. 2003;77:4139–48.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Johansson P, Jansson A, Ruetschi U, Rymo L. Nuclear factor-kappaB binds to the Epstein-Barr virus LMP1 promoter and upregulates its expression. J Virol. 2009;83:1393–401.CrossRefPubMedGoogle Scholar
  43. 43.
    Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS. Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem. 1999;274:16085–96.CrossRefPubMedGoogle Scholar
  44. 44.
    Hussain SP, Trivers GE, Hofseth LJ, He P, Shaikh I, Mechanic LE, et al. Nitric oxide, a mediator of inflammation, suppresses tumorigenesis. Cancer Res. 2004;64:6849–53.CrossRefPubMedGoogle Scholar
  45. 45.
    Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis. 1998;19:711–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Yu CR, Dambuza IM, Lee YJ, Frank GM, Egwuagu CE. STAT3 regulates proliferation and survival of CD8+ T cells: enhances effector responses to HSV-1 infection, and inhibits IL-10+ regulatory CD8+ T cells in autoimmune uveitis. Mediat Inflamm. 2013;2013, 359674.CrossRefGoogle Scholar
  47. 47.
    Villavicencio RT, Liu S, Kibbe MR, Williams DL, Ganster RW, Dyer KF, et al. Induced nitric oxide inhibits IL-6-induced stat3 activation and type II acute phase mRNA expression. Shock. 2000;13:441–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Siednienko J, Nowak J, Moynagh PN, Gorczyca WA. Nitric oxide affects IL-6 expression in human peripheral blood mononuclear cells involving cGMP-dependent modulation of NF-kappaB activity. Cytokine. 2011;54:282–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Lianxu C, Hongti J, Changlong Y. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthr Cartil. 2006;14:367–76.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen HH, Wang DL. Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells. Mol Pharmacol. 2004;65:1130–40.CrossRefPubMedGoogle Scholar
  51. 51.
    Kesanakurti D, Chetty C, Dinh DH, Gujrati M, Rao JS. Role of MMP-2 in the regulation of IL-6/Stat3 survival signaling via interaction with alpha5beta1 integrin in glioma. Oncogene. 2013;32:327–40.CrossRefPubMedGoogle Scholar
  52. 52.
    Simeone AM, McMurtry V, Nieves-Alicea R, Saavedra JE, Keefer LK, Johnson MM, et al. TIMP-2 mediates the anti-invasive effects of the nitric oxide-releasing prodrug JS-K in breast cancer cells. Breast Cancer Res. 2008;10:R44.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Snyder CM, Shroff EH, Liu J, Chandel NS. Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members. PLoS One. 2009;4, e7059.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lui VW, Wong EY, Ho Y, Hong B, Wong SC, Tao Q, et al. STAT3 activation contributes directly to Epstein-Barr virus-mediated invasiveness of nasopharyngeal cancer cells in vitro. Int J Cancer. 2009;125:1884–93.CrossRefPubMedGoogle Scholar
  55. 55.
    Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fogg M, Murphy JR, Lorch J, Posner M, Wang F. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein-Barr virus associated nasopharyngeal carcinoma. Virology. 2013;441:107–13.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tsukamoto H, Nishikata R, Senju S, Nishimura Y. Myeloid-derived suppressor cells attenuate TH1 development through IL-6 production to promote tumor progression. Cancer Immunol Res. 2013;1:64–76.CrossRefPubMedGoogle Scholar
  58. 58.
    Li J. The expansion and activity of myeloid-derived suppressor cells in nasopharyngeal carcinoma mediated by up-regulating COX-2. J Immunol. 2015;194:141.12.Google Scholar
  59. 59.
    Chang CS, Chang JH, Hsu NC, Lin HY, Chung CY. Expression of CD80 and CD86 costimulatory molecules are potential markers for better survival in nasopharyngeal carcinoma. BMC Cancer. 2007;7:88.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zanussi S, Vaccher E, Caffau C, Pratesi C, Crepaldi C, Bortolin MT, et al. Interferon-gamma secretion and perforin expression are impaired in CD8+ T lymphocytes from patients with undifferentiated carcinoma of nasopharyngeal type. Cancer Immunol Immunother. 2003;52:28–32.PubMedGoogle Scholar
  61. 61.
    Chang KP, Chang YT, Wu CC, Liu YL, Chen MC, Tsang NM, et al. Multiplexed immunobead-based profiling of cytokine markers for detection of nasopharyngeal carcinoma and prognosis of patient survival. Head Neck. 2011;33:886–97.CrossRefPubMedGoogle Scholar
  62. 62.
    Kudo S, Nagasaki Y. A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly(l-arginine)-based nanoparticles. J Control Release. 2015;217:256–62.CrossRefPubMedGoogle Scholar
  63. 63.
    Munaweera I, Shi Y, Koneru B, Patel A, Dang MH, Di Pasqua AJ, et al. Nitric oxide- and cisplatin-releasing silica nanoparticles for use against non-small cell lung cancer. J Inorg Biochem. 2015;153:23–31.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ahmed-Amine Zergoun
    • 1
  • Abderezak Zebboudj
    • 1
  • Sarah Leila Sellam
    • 1
  • Nora Kariche
    • 1
  • Djamel Djennaoui
    • 2
  • Samir Ouraghi
    • 2
  • Esma Kerboua
    • 3
  • Zine-Charaf Amir-Tidadini
    • 4
  • Dalia Chilla
    • 4
  • Fatima Asselah
    • 4
  • Chafia Touil-Boukoffa
    • 1
  • Taha Merghoub
    • 5
  • Mehdi Bourouba
    • 1
  1. 1.Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases. Faculty of BiologyUniversity Houari Boumediene USTHBAlgiersAlgeria
  2. 2.Oto-rhyno-laryngology DepartmentMustapha Pacha HospitalAlgiersAlgeria
  3. 3.Oncology Department, Centre Pierre et Marie CurieAlgiersAlgeria
  4. 4.Central Laboratory for AnatomopathologyMustapha Pacha HospitalAlgiersAlgeria
  5. 5.Ludwig Collaborative LaboratoryMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations