Advertisement

Tumor Biology

, Volume 37, Issue 3, pp 3417–3423 | Cite as

Caffeine-induced nuclear translocation of FoxO1 triggers Bim-mediated apoptosis in human glioblastoma cells

  • Fei Sun
  • Dong-feng Han
  • Bo-qiang Cao
  • Bo Wang
  • Nan Dong
  • De-hua Jiang
Original Article

Abstract

Caffeine is one of the most commonly ingested neuroactive compounds and exhibits anticancer effects through induction of apoptosis and suppression of cell proliferation. However, the mechanisms underlying these effects are currently unknown. In this study, we investigated the mechanisms of caffeine-induced apoptosis in U251 cells (human glioma cell line). We analyzed the inhibitory effects of caffeine on cell proliferation by performing WST-8 and colony formation assays; in addition, cell survival was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometric analysis. Western blotting was used to investigate the role played by FoxO1 in the proapoptotic effects of caffeine on glioma cells. Results showed that caffeine inhibited proliferation and survival of human glioma cells, induced apoptosis, and increased the expression of FoxO1 and its proapoptotic target Bim. In addition, we found that FoxO1 enhanced the transcription of its proapoptotic target Bim. In summary, our data indicates that FoxO1–Bim mediates caffeine-induced regression of glioma growth by activating cell apoptosis, thereby providing new mechanistic insight into the possible use of caffeine in treating human cancer.

Keywords

Caffeine Apoptosis Forkhead box O1 (FoxO1) Bim 

References

  1. 1.
    Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME. Molecular targets of glioma invasion. Cell Mol Life Sci. 2007;64:458–78.CrossRefPubMedGoogle Scholar
  2. 2.
    Ohgaki H. Epidemiology of brain tumors. Methods Mol Biol. 2009;472:323–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Villano JL, Seery TE, Bressler LR. Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol. 2009;64:647–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.PubMedGoogle Scholar
  5. 5.
    Gabrielli B, Chau YQ, Giles N, Harding A, Stevens F, Beamish H. Caffeine promotes apoptosis in mitotic spindle checkpoint-arrested cells. J Biol Chem. 2007;282:6954–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Holick CN, Smith SG, Giovannucci E, Michaud DS. Coffee, tea, caffeine intake, and risk of adult glioma in three prospective cohort studies. Cancer Epidemiol Biomarkers Prev. 2010;19:39–47.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tanaka H, Mizojiri K. Drug-protein binding and blood-brain barrier permeability. J Pharmacol Exp Ther. 1999;288:912–8.PubMedGoogle Scholar
  8. 8.
    Janss AJ, Levow C, Bernhard EJ, Muschel RJ, McKenna WG, Sutton L, et al. Caffeine and staurosporine enhance the cytotoxicity of cisplatin and camptothecin in human brain tumor cell lines. Exp Cell Res. 1998;243:29–38.CrossRefPubMedGoogle Scholar
  9. 9.
    Sinn B, Tallen G, Schroeder G, Grassl B, Schulze J, Budach V, et al. Caffeine confers radiosensitization of PTEN-deficient malignant glioma cells by enhancing ionizing radiation-induced G1 arrest and negatively regulating Akt phosphorylation. Mol Cancer Ther. 2010;9:480–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Ku BM, Lee YK, Jeong JY, Ryu J, Choi J, Kim JS, et al. Caffeine inhibits cell proliferation and regulates PKA/GSK3Β pathways in U87MG human glioma cells. Mol Cells. 2010;31:275–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Bode AM, Dong Z. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett. 2007;247:26–39.CrossRefPubMedGoogle Scholar
  12. 12.
    Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–19.CrossRefPubMedGoogle Scholar
  13. 13.
    Gunther W, Pawlak E, Damasceno R, Arnold H, Terzis AJ. Temozolomide induces apoptosis and senescence in glioma cells cultured as multicellular spheroids. Br J Cancer. 2003;88:463–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Heath-Engel HM, Shore GC. Regulated targeting of Bax and Bak to intracellular membranes during apoptosis. Cell Death Differ. 2006;13:1277–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Costa DB, Halmos B, Kumar A, Schumer ST, Huberman MS, Boggon TJ, et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 2007;4:1669–79.CrossRefPubMedGoogle Scholar
  16. 16.
    Deng J, Shimamura T, Perera S, Carlson NE, Cai D, Shapiro GI, et al. Proapoptotic BH3-only BCL-2 family protein BIM connects death signaling from epidermal growth factor receptor inhibition to the mitochondrion. Cancer Res. 2007;67:11867–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Sanchez AMJ, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2013;71:1657–71.CrossRefGoogle Scholar
  18. 18.
    Maiese K, Chong ZZ, Shang YC, Hou J. Clever cancer strategies with FoxO transcription factors. Cell Cycle. 2008;7:3829–39.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120:2479–87.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang B, Sun F, Dong N, Sun Z, Diao Y, Zheng C, et al. MicroRNA-7 directly targets insulin-like growth factor 1 receptor to inhibit cellular growth and glucose metabolism in gliomas. Diagn Pathol. 2014;9:211.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhou J, Li H, Li X, Zhang G, Niu Y, Yuan Z, et al. The roles of Cdk5-mediated subcellular localization of FOXO1 in neuronal death. J Neurosci. 2015;35:2624–35.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I, et al. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy. 2011;7:176–87.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 1813;2011:1978–86.Google Scholar
  24. 24.
    He Z, Ma W-Y, Hashimoto T, Bode AM, Yang CS, Dong Z. Induction of apoptosis by caffeine is mediated by the p53, bax, and caspase 3 pathways. Cancer Res. 2003;63:4396–401.PubMedGoogle Scholar
  25. 25.
    Delhalle S, Duvoix A, Schnekenburger M, Morceau F, Dicato M, Diederich M. An introduction to the molecular mechanisms of apoptosis. Ann N Y Acad Sci. 2003;1010:1–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:1126–32.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gilley J, Coffer PJ, Ham J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol. 2003;162:613–22.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem. 2002;277:47928–37.CrossRefPubMedGoogle Scholar
  29. 29.
    Hashimoto T, He Z, Ma W-Y, Schmid PC, Bode AM, Yang CS, et al. Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells. Cancer Res. 2004;64:3344–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Lau CJ, Koty Z, Nalbantoglu J. Differential response of glioma cells to FOXO1-directed therapy. Cancer Res. 2009;69:5433–40.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Fei Sun
    • 1
  • Dong-feng Han
    • 1
  • Bo-qiang Cao
    • 1
  • Bo Wang
    • 1
  • Nan Dong
    • 1
  • De-hua Jiang
    • 1
  1. 1.Department of NeurosurgeryXuzhou Central HospitalXuzhouChina

Personalised recommendations