Advertisement

Tumor Biology

, Volume 37, Issue 3, pp 3359–3364 | Cite as

Decreased expression of p27 is associated with malignant transformation and extrathyroidal extension in papillary thyroid carcinoma

  • Sung-Im Do
  • Dong Hyun Kim
  • Jung-Ho Yang
  • Jung-Soo Pyo
  • Kyungeun Kim
  • Hyunjoo Lee
  • In-Gu Do
  • Dong-Hoon Kim
  • Seoung Wan Chae
  • Jin Hee Sohn
Original Article

Abstract

Cell cycle regulatory proteins including p16, p27, and p53 are well studied in various cancers. However, their single or concurrent roles related with the clinicopathological parameters are not clearly recognized. We analyzed the expression of p16, p27, and p53 cell cycle regulatory proteins in papillary thyroid carcinoma (PTC). To determine the prognostic significance of cell cycle regulatory proteins, 107 PTCs were examined. We analyzed the individual expression of p16, p27, and p53 and their concurrent expressions, with the relationship to various clinicopathological parameters including differentiation from benign lesions. High expression of p16 and p53 and low expression of p27 were related with the distinguishing of PTC from benign lesions. In addition, normal thyroidal tissue showed higher p27 expression than nodular hyperplasia. In relation to extrathyroidal extension (ETE), the low expression of p27 was related with the presence of ETE. The low expression of p27 and high expression of p16 and p53 may affect the development of PTC. In addition, low p27 expression is related with the existence of ETE.

Keywords

Papillary thyroid carcinoma p16 p27 p53 Extrathyroidal extension 

Notes

Compliance with ethical standards

Ethical approval

For this type of study, formal consent is not required.

Conflicts of interest

None

References

  1. 1.
    Hundahl SA, Cady B, Cunningham MP, Mazzaferri E, McKee RF, Rosai J, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. U.S. and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation Study. Cancer. 2000;89(1):202–17.CrossRefPubMedGoogle Scholar
  2. 2.
    Davies L, Welch G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006;295(18):2164–7. doi: 10.1001/jama.295.18.2164.CrossRefPubMedGoogle Scholar
  3. 3.
    Ito Y, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, et al. Risk factors for recurrence to the lymph node in papillary thyroid carcinoma patients without preoperatively detectable lateral node metastasis: validity of prophylactic modified radical neck dissection. World J Surg. 2007;31(11):2085–91. doi: 10.1007/s00268-007-9224-y.CrossRefPubMedGoogle Scholar
  4. 4.
    Mercante G, Frasoldati A, Pedroni C, Formisano D, Renna L, Piana S, et al. Prognostic factors affecting neck lymph node recurrence and distant metastasis in papillary microcarcinoma of the thyroid: results of a study in 445 patients. Thyroid: Off J Am Thyroid Assoc. 2009;19(7):707–16. doi: 10.1089/thy.2008.0270.CrossRefGoogle Scholar
  5. 5.
    Moreno-Egea A, Rodriguez-Gonzalez JM, Sola-Perez J, Soria-Cogollos T, Parrilla-Paricio P. Multivariate analysis of histopathological features as prognostic factors in patients with papillary thyroid carcinoma. B J Surg. 1995;82(8):1092–4.CrossRefGoogle Scholar
  6. 6.
    Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994;79(1):13–21. doi:0092-8674(94)90396-4 [pii].CrossRefPubMedGoogle Scholar
  7. 7.
    Reinstein E, Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med. 2006;145(9):676–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Yang CH, Wu CC, Chen WT, Chai CY, Yang SF. Expressions of p16 and p27 in urothelial carcinoma and their prognostic value. Kaohsiung J Med Sci. 2014;30(9):453–8. doi: 10.1016/j.kjms.2014.05.003.CrossRefPubMedGoogle Scholar
  9. 9.
    Bodoor K, Haddad Y, Alkhateeb A, Al-Abbadi A, Dowairi M, Magableh A, et al. DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients. Asian Pac J Cancer Prev: APJCP. 2014;15(1):75–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Knosel T, Altendorf-Hofmann A, Lindner L, Issels R, Hermeking H, Schuebbe G, et al. Loss of p16(INK4a) is associated with reduced patient survival in soft tissue tumours, and indicates a senescence barrier. J Clin Pathol. 2014;67(7):592–8. doi: 10.1136/jclinpath-2013-202106.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang P, Pei R, Lu Z, Rao X, Liu B. Methylation of p16 CpG islands correlated with metastasis and aggressiveness in papillary thyroid carcinoma. J Chin Med Assoc. 2013;76(3):135–9. doi: 10.1016/j.jcma.2012.11.007.CrossRefPubMedGoogle Scholar
  12. 12.
    Zafon C, Obiols G, Castellvi J, Ramon y Cajal S, Baena JA, Mesa J. Expression of p21cip1, p27kip1, and p16INK4a cyclin-dependent kinase inhibitors in papillary thyroid carcinoma: Correlation with clinicopathological factors. Endocr Pathol. 2008;19(3):184–9. doi: 10.1007/s12022-008-9037-z.CrossRefPubMedGoogle Scholar
  13. 13.
    Khoo ML, Freeman JL, Witterick IJ, Irish JC, Rotstein LE, Gullane PJ, et al. Underexpression of p27/Kip in thyroid papillary microcarcinomas with gross metastatic disease. Arch Otolaryngol Head Neck Surg. 2002;128(3):253–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Tallini G, Garcia-Rostan G, Herrero A, Zelterman D, Viale G, Bosari S, et al. Downregulation of p27KIP1 and Ki67/Mib1 labeling index support the classification of thyroid carcinoma into prognostically relevant categories. Am J Surg Pathol. 1999;23(6):678–85.CrossRefPubMedGoogle Scholar
  15. 15.
    Ciechanover A, Shkedy D, Oren M, Bercovich B. Degradation of the tumor suppressor protein p53 by the ubiquitin-mediated proteolytic system requires a novel species of ubiquitin-carrier protein, E2. J Biol Chem. 1994;269(13):9582–9.PubMedGoogle Scholar
  16. 16.
    Dobashi Y, Sakamoto A, Sugimura H, Mernyei M, Mori M, Oyama T, et al. Overexpression of p53 as a possible prognostic factor in human thyroid carcinoma. Am J Surg Pathol. 1993;17(4):375–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Hosal SA, Apel RL, Freeman JL, Azadian A, Rosen IB, LiVolsi VA, et al. Immunohistochemical localization of p53 in human thyroid neoplasms: correlation with biological behavior. Endocr Pathol. 1997;8(1):21–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Zedenius J, Larsson C, Wallin G, Backdahl M, Aspenblad U, Hoog A, et al. Alterations of p53 and expression of WAF1/p21 in human thyroid tumors. Thyroid: Off J Am Thyroid Assoc. 1996;6(1):1–9.CrossRefGoogle Scholar
  19. 19.
    Bai J, Zhou Y, Chen G, Zeng J, Ding J, Tan Y, et al. Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol. 2011;42(3):375–83. doi: 10.1016/j.humpath.2010.09.003.CrossRefPubMedGoogle Scholar
  20. 20.
    Gillett CE, Barnes DM. Demystified cell cycle. Mol Pathol MP. 1998;51(6):310–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Xu Y, Yang EM, Brugarolas J, Jacks T, Baltimore D. Involvement of p53 and p21 in cellular defects and tumorigenesis in atm-/- mice. Mol Cell B Siology. 1998;18(7):4385–90.CrossRefGoogle Scholar
  22. 22.
    Sharpless NE. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res Fundam Mol Mech Mutagen. 2005;576(1–2):22–38. doi: 10.1016/j.mrfmmm.2004.08.021.CrossRefGoogle Scholar
  23. 23.
    Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2002;1602(1):73–87. doi: 10.1016/S0304-419X(02)00037-9.CrossRefGoogle Scholar
  24. 24.
    Lam AK, Lo CY, Leung P, Lang BH, Chan WF, Luk JM. Clinicopathological roles of alterations of tumor suppressor gene p16 in papillary thyroid carcinoma. Ann Surg Oncol. 2007;14(5):1772–9. doi: 10.1245/s10434-006-9280-9.CrossRefPubMedGoogle Scholar
  25. 25.
    Boltze C, Zack S, Quednow C, Bettge S, Roessner A, Schneider-Stock R. Hypermethylation of the CDKN2/p16INK4A promotor in thyroid carcinogenesis. Pathol Res Pract. 2003;199(6):399–404. doi: 10.1078/0344-0338-00436.CrossRefPubMedGoogle Scholar
  26. 26.
    Ball E, Bond J, Franc B, DeMicco C, Wynford-Thomas D. An immunohistochemical study of p16INK4a expression in multistep thyroid tumourigenesis. Eur J Cancer. 2007;43(1):194–201. doi: 10.1016/j.ejca.2006.08.025.CrossRefPubMedGoogle Scholar
  27. 27.
    Wander SA, Zhao D, Slingerland JM. P27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(1):12–8. doi: 10.1158/1078-0432.ccr-10-0752.CrossRefGoogle Scholar
  28. 28.
    Karlidag T, Cobanoglu B, Keles E, Alpay HC, Ozercan I, Kaygusuz I, et al. Expression of Bax, p53, and p27/kip in patients with papillary thyroid carcinoma with or without cervical nodal metastasis. Am J Otolaryngol. 2007;28(1):31–6. doi: 10.1016/j.amjoto.2006.06.008.CrossRefPubMedGoogle Scholar
  29. 29.
    Isobe M, Emanuel BS, Givol D, Oren M, Croce CM. Localization of gene for human p53 tumour antigen to band 17p13. Nature. 1986;320(6057):84–5. doi: 10.1038/320084a0.CrossRefPubMedGoogle Scholar
  30. 30.
    McBride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A. 1986;83(1):130–4.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lamb P, Crawford L. Characterization of the human p53 gene. Mol Cell Biol. 1986;6(5):1379–85.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bai L, Zhu WG, P53: Structure, function and therapeutic applications. 2006.Google Scholar
  33. 33.
    Mollereau B, Ma D. The p53 control of apoptosis and proliferation: lessons from drosophila. Apoptosis: Int J Programmed Cell Death. 2014;19(10):1421–9. doi: 10.1007/s10495-014-1035-7.CrossRefGoogle Scholar
  34. 34.
    Horie S, Maeta H, Endo K, Ueta T, Takashima K, Terada T. Overexpression of p53 protein and MDM2 in papillary carcinomas of the thyroid: correlations with clinicopathologic features. Pathol Int. 2001;51(1):11–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Morita N, Ikeda Y, Takami H. Clinical significance of p53 protein expression in papillary thyroid carcinoma. World J Surg. 2008;32(12):2617–22. doi: 10.1007/s00268-008-9756-9.CrossRefPubMedGoogle Scholar
  36. 36.
    Shin MK, Kim JW. Clinicopathologic and diagnostic significance of p53 protein expression in papillary thyroid carcinoma. Asian Pac J Cancer Prev: APJCP. 2014;15(5):2341–4.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Sung-Im Do
    • 1
  • Dong Hyun Kim
    • 1
  • Jung-Ho Yang
    • 1
  • Jung-Soo Pyo
    • 1
  • Kyungeun Kim
    • 1
  • Hyunjoo Lee
    • 1
  • In-Gu Do
    • 1
  • Dong-Hoon Kim
    • 1
  • Seoung Wan Chae
    • 1
  • Jin Hee Sohn
    • 1
  1. 1.Department of Pathology, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulSouth Korea

Personalised recommendations