Tumor Biology

, Volume 37, Issue 1, pp 29–37 | Cite as

The role of cullin proteins in gastric cancer

  • Peng Chen
  • Guo-Dong Yao


The cullin proteins are a family of scaffolding proteins that associate with RING proteins and ubiquitin E3 ligases and mediate substrate–receptor bindings. Thus, cullin proteins regulate the specificity of ubiquitin targeting in the regulation of proteins involved in various cellular processes, including proliferation, differentiation, and apoptosis. There are seven cullin proteins that have been identified in eukaryotes: CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, and CUL7/p53-associated parkin-like cytoplasmic protein. All of these proteins contain a conserved cullin homology domain that binds to RING box proteins. Cullin–RING ubiquitin ligase complexes are activated upon post-translational modification by neural precursor cell-expressed, developmentally downregulated protein 8. The aberrant expression of several cullin proteins has been implicated in many cancers though the significance in gastric cancer has been less well investigated. This review provides the first systematic discussion of the associations between all members of the cullin protein family and gastric cancer. Functional and regulatory mechanisms of cullin proteins in gastric carcinoma progression are also summarized along with a discussion concerning future research areas. Accumulating evidence suggests a critical role of cullin proteins in tumorigenesis, and a better understanding of the function of these individual cullin proteins and their targets will help identify potential biomarkers and therapeutic targets.


Cullin proteins Cullin–RING E3 ligase complex Gastric cancer Tumor therapy Ubiquitin–proteasome system 


Conflicts of interest



  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi: 10.3322/caac.21262.PubMedGoogle Scholar
  2. 2.
    Lin Y, Ueda J, Kikuchi S, Totsuka Y, Wei WQ, Qiao YL, et al. Comparative epidemiology of gastric cancer between Japan and China. World J Gastroenterol. 2011;17:4421–8. doi: 10.3748/wjg.v17.i39.4421.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Fang WL, Huang KH, Lan YT, Chen MH, Chao Y, Lo SS, et al. The risk factors of lymph node metastasis in early gastric cancer. Pathol Onocl Res. 2015. doi: 10.1007/s12253-015-9920-0.Google Scholar
  4. 4.
    Coburn NG, Lourenco LG, Rossi SE, Gunraj N, Mahar AL, Helyer LK, et al. Management of gastric cancer in Ontario. J Surg Oncol. 2010;102:54–63. doi: 10.1002/jso.21561.PubMedGoogle Scholar
  5. 5.
    Chen Y, Awan N, Haveman JW, Apostolou C, Chang DK, Merrett ND. Gastric cancer: Australian outcomes of multi-modality treatment with curative intent. ANZ J Surg. 2014. doi: 10.1111/ans.12693.Google Scholar
  6. 6.
    Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer. J Biomed Sci. 2012;19:67. doi: 10.1186/1423-0127-19-67.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu J, Nussinov R. The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation. PLoS Comput Biol. 2009;5, e1000527. doi: 10.1371/journal.pcbi.1000527.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Qi J, Kim H, Scortegagna M, Ronai ZA. Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys. 2013;67:15–24. doi: 10.1007/s12013-013-9636-2.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell Biol. 2009;33:275–86. doi: 10.1016/j.molcel.2009.01.014.Google Scholar
  10. 10.
    Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008;9:536–42. doi: 10.1038/embor.2008.93.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol. 2009;10:659–71. doi: 10.1038/nrm2767.PubMedGoogle Scholar
  12. 12.
    Ikeda F, Crosetto N, Dikic I. What determines the specificity and outcomes of ubiquitin signaling? Cell. 2010;143:677–81. doi: 10.1016/j.cell.2010.10.026.PubMedGoogle Scholar
  13. 13.
    Sadowski M, Suryadinata R, Tan AR, Roesley SN, Sarcevic B. Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life. 2012;64:136–42. doi: 10.1002/iub.589.PubMedGoogle Scholar
  14. 14.
    Sekiyama N, Jee J, Isogai S, Akagi K, Huang TH, Ariyoshi M, et al. NMR analysis of Lys63-linked polyubiquitin recognition by the tandem ubiquitin-interacting motifs of Rap80. J Biomol NMR. 2012;52:339–50. doi: 10.1007/s10858-012-9614-9.PubMedGoogle Scholar
  15. 15.
    Hofmann K. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair (Amst). 2009;8:544–56. doi: 10.1016/j.dnarep.2009.01.003.Google Scholar
  16. 16.
    Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008;133:653–65. doi: 10.1016/j.cell.2008.04.012.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kravtsova-Ivantsiv Y, Sommer T, Ciechanover A. The lysine48-based polyubiquitin chain proteasomal signal: not a single child anymore. Angew Chem Int Ed Engl. 2013;52:192–8. doi: 10.1002/anie.201205656.PubMedGoogle Scholar
  18. 18.
    Lee EK, Diehl JA. SCFs in the new millennium. Oncogene. 2014;33:2011–8. doi: 10.1038/onc.2013.144].PubMedGoogle Scholar
  19. 19.
    Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009;37(Pt 5):937–53. doi: 10.1042/BST0370937].PubMedGoogle Scholar
  20. 20.
    Pan Y, Xu H, Liu R, Jia L. Induction of cell senescence by targeting to Cullin-RING Ligases (CRLs) for effective cancer therapy. Int J Biochem Mol Biol. 2012;3:273–81.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lu A, Pfeffer SR. A CULLINary ride across the secretory pathway: more than just secretion. Trends Cell Biol. 2014;24(7):389–99. doi: 10.1016/j.tcb2014.02.011.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zimmerman ES, Schulman BA, Zheng N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 2010;20:714–21. doi: 10.1016/ Scholar
  23. 23.
    Lee J, Zhou P. Cullins and cancer. Genes Cancer. 2010;1:690–9. doi: 10.1177/1947601910382899.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011;12:220. doi: 10.1186/gb-2011-12-4-220.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Watson IR, Irwin MS, Ohh M. NEDD8 pathways in cancer, Sine Quibus Non. Cancer Cell. 2011;19:168–76. doi: 10.1016/j.ccr.2011.01.002.PubMedGoogle Scholar
  26. 26.
    Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6:9–20. doi: 10.1038/nrm1547.PubMedGoogle Scholar
  27. 27.
    Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002;416:703–9. doi: 10.1038/416703a.PubMedGoogle Scholar
  28. 28.
    Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics. 2013;40:97–106. doi: 10.1016/j.jgg.2013.02.001.PubMedGoogle Scholar
  29. 29.
    Wang W, Chen Y, Deng J, Zhou J, Gu X, Tang Y, et al. Cullin1 is a novel prognostic marker and regulates the cell proliferation and metastasis in colorectal cancer. J Cancer Res Clin Oncol. 2015. doi: 10.1007/s00432-015-1931-4.Google Scholar
  30. 30.
    Skaar JR, D’Angiolella V, Pagan JK, Pagano M. SnapShot: F box proteins II. Cell. 2009;137:1358. doi: 10.1016/j.cell.2009.05.040. 1358 e1351.PubMedGoogle Scholar
  31. 31.
    Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14:369–81. doi: 10.1038/nrm3582.PubMedGoogle Scholar
  32. 32.
    Wang Z, Liu P, Inuzuka H, Wei W. Roles of F-box proteins in cancer. Nat Rev Cancer. 2014;14:233–47. doi: 10.1038/nrc3700].PubMedPubMedCentralGoogle Scholar
  33. 33.
    Yokobori T, Mimori K, Iwatsuki M, Ishii H, Onoyama I, Fukagawa T, et al. p53-Altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 2009;69:3788–94. doi: 10.1158/0008-5472.CAN-08-2846].PubMedGoogle Scholar
  34. 34.
    Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007;67:9006–12. doi: 10.1158/0008-5472.CAN-07-1320].PubMedGoogle Scholar
  35. 35.
    Milne AN, Leguit R, Corver WE, Morsink FH, Polak M, de Leng WW, et al. Loss of CDC4/FBXW7 in gastric carcinoma. Cell Oncol. 2010;32:347–59. doi: 10.3233/CLO-2010-523].PubMedPubMedCentralGoogle Scholar
  36. 36.
    Calcagno DQ, Freitas VM, Leal MF, de Souza CR, Demachki S, Montenegro R, et al. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC Gastroenterol. 2013;13:141. doi: 10.1186/1471-230X-13-141.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cho HJ, Oh YJ, Kwon J, Kwon JY, Kim KS, Kim H. c-Myc stimulates cell invasion by inhibiting FBX8 function. Mol Cells. 2010;30:355–62. doi: 10.1007/s10059-010-0134-8.PubMedGoogle Scholar
  38. 38.
    Wu P, Wang F, Wang Y, Men H, Zhu X, He G, et al. Significance of FBX8 in progression of gastric cancer. Exp Mol Pathol. 2015;98:360–6. doi: 10.1016/j.yexmp.2015.03.015.PubMedGoogle Scholar
  39. 39.
    Yano H, Kobayashi I, Onodera Y, Luton F, Franco M, Mazaki Y, et al. Fbx8 makes Arf6 refractory to function via ubiquitination. Mol Biol Cell. 2008;19:822–32. doi: 10.1091/mbc.E07-08-0763.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81. doi: 10.1038/nrc1881.PubMedGoogle Scholar
  41. 41.
    Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 2010;464:374–9. doi: 10.1038/nature08815.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, et al. Skp2: a novel potential therapeutic target for prostate cancer. Biochim Biophys Acta. 1825;2012:11–7. doi: 10.1016/j.bbcan.2011.09.002.Google Scholar
  43. 43.
    Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J, et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice. Nat Genet. 2010;42:83–8. doi: 10.1038/ng.498.PubMedGoogle Scholar
  44. 44.
    Wei Z, Jiang X, Liu F, Qiao H, Zhou B, Zhai B, et al. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol. 2013;34:181–92. doi: 10.1007/s13277-012-0527-8.PubMedGoogle Scholar
  45. 45.
    Bai J, Zhou Y, Chen G, Zeng J, Ding J, Tan Y, et al. Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol. 2011;42:375–83. doi: 10.1016/j.humpath.2010.09.003.PubMedGoogle Scholar
  46. 46.
    Humar B, Fukuzawa R, Blair V, Dunbier A, More H, Charlton A, et al. Destabilized adhesion in the gastric proliferative zone and c-Src kinase activation mark the development of early diffuse gastric cancer. Cancer Res. 2007;67:2480–9. doi: 10.1158/0008-5472.CAN-06-3021.PubMedGoogle Scholar
  47. 47.
    Giaginis CT, Vgenopoulou S, Tsourouflis GS, Politi EN, Kouraklis GP, Theocharis SE. Expression and clinical significance of focal adhesion kinase in the two distinct histological types, intestinal and diffuse, of human gastric adenocarcinoma. Pathol Oncol Res. 2009;15:173–81. doi: 10.1007/s12253-008-9120-2.PubMedGoogle Scholar
  48. 48.
    Ilyin GP, Rialland M, Pigeon C, Guguen-Guillouzo C. cDNA cloning and expression analysis of new members of the mammalian F-box protein family. Genomics. 2000;67:40–7. doi: 10.1006/geno.2000.6211.PubMedGoogle Scholar
  49. 49.
    Zhang YW, Brognard J, Coughlin C, You Z, Dolled-Filhart M, Aslanian A, et al. The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell. 2009;35:442–53. doi: 10.1016/j.molcel.2009.06.030.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang L, Hou Y, Wang M, Wu B, Li N. A study on the functions of ubiquitin metabolic system related gene FBG2 in gastric cancer cell line. J Exp Clin Cancer Res. 2009;28:78. doi: 10.1186/1756-9966-28-78.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakayama KI. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab. 2011;14:339–51. doi: 10.1016/j.cmet.2011.07.011.PubMedGoogle Scholar
  52. 52.
    Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science. 2009;326:718–21. doi: 10.1126/science.1176333.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN, Li Q, et al. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science. 2009;326:722–6. doi: 10.1126/science.1176326.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Cen G, Ding HH, Liu B, Wu WD. FBXL5 targets cortactin for ubiquitination-mediated destruction to regulate gastric cancer cell migration. Tumour Biol. 2014;35:8633–8. doi: 10.1007/s13277-014-2104-9.PubMedGoogle Scholar
  55. 55.
    MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a glance. J Cell Sci. 2012;125:1621–6. doi: 10.1242/Jcs.093781.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Migita K, Takayama T, Matsumoto S, Wakatsuki K, Tanaka T, Ito M, et al. Prognostic impact of RING box protein-1 (RBX1) expression in gastric cancer. Gastric Cancer. 2014;17:601–9. doi: 10.1007/s10120-013-0318-y.PubMedGoogle Scholar
  57. 57.
    Ohta T, Michel JJ, Schottelius AJ, Xiong Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell. 1999;3:535–41.PubMedGoogle Scholar
  58. 58.
    Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science. 1999;284:662–5.PubMedGoogle Scholar
  59. 59.
    Chen X, Wang Y, Zang W, Du Y, Li M, Zhao G. miR-194 targets RBX1 gene to modulate proliferation and migration of gastric cancer cells. Tumour Biol. 2014;36:2393–401. doi: 10.1007/s13277-014-2849-1.PubMedGoogle Scholar
  60. 60.
    Kong Y, Kejun N, Yin Y. Identification and characterization of CAC1 as a novel CDK2-associated cullin. Cell Cycle. 2014;8:3552–61. doi: 10.4161/cc.8.21.9955.Google Scholar
  61. 61.
    Zheng Q, Zhao LY, Kong Y, Nan KJ, Yao Y, Liao ZJ. CDK-associated Cullin 1 can promote cell proliferation and inhibit cisplatin-induced apoptosis in the AGS gastric cancer cell line. World J Surg Oncol. 2013;11:5. doi: 10.1186/1477-7819-11-5.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Park SW, Chung NG, Hur SY, Kim HS, Yoo NJ, Lee SH. Mutational analysis of hypoxia-related genes HIF1alpha and CUL2 in common human cancers. APMIS. 2009;117:880–5. doi: 10.1111/j.1600-0463.2009.02550.x.PubMedGoogle Scholar
  63. 63.
    De Maio FA, Rocco CA, Aulicino PC, Bologna R, Mangano A, Sen L. APOBEC3-mediated editing in HIV type 1 from pediatric patients and its association with APOBEC3G/CUL5 polymorphisms and Vif variability. AIDS Res Hum Retroviruses. 2012;28:619–27. doi: 10.1089/AID.2011.0291.PubMedGoogle Scholar
  64. 64.
    Bulatov MEM, Chatterjee S, Knebel A, Shimamura S, Konijnenberg A, Johnson C, et al. Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase: suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2). J Biol Chem. 2015;290:4178–91. doi: 10.1074/jbc.M114.616664.PubMedGoogle Scholar
  65. 65.
    Mahrour N, Redwine WB, Florens L, Swanson SK, Martin-Brown S, Bradford WD, et al. Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases. J Biol Chem. 2008;283:8005–13. doi: 10.1074/jbc.M706987200.PubMedGoogle Scholar
  66. 66.
    Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7. doi: 10.1111/j.1440-1746.2008.05666.x.PubMedGoogle Scholar
  67. 67.
    Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J, et al. Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p. Int Immunopharmacol. 2012;13:468–75. doi: 10.1016/j.intimp.2012.05.016.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Kazi JU, Ronnstrand L. Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Mol Oncol. 2013;7:693–703. doi: 10.1016/j.molonc.2013.02.020.PubMedGoogle Scholar
  69. 69.
    Lai R-H, Hsiao Y-W, Wang M-J, Lin H-Y, Wu C-W, Chi C-W, et al. SOCS6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation. Cancer Lett. 2010;288:75–85. doi: 10.1016/j.canlet.2009.06.025.PubMedGoogle Scholar
  70. 70.
    Li G, Xu J, Wang Z, Yuan Y, Li Y, Cai S, et al. Low expression of SOCS-1 and SOCS-3 is a poor prognostic indicator for gastric cancer patients. J Cancer Res Clin Oncol. 2015;141:443–52. doi: 10.1007/s00432-014-1838-5.PubMedGoogle Scholar
  71. 71.
    Furukawa M, He YJ, Borchers C, Xiong Y. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol. 2003;5:1001–7. doi: 10.1038/ncb1056.PubMedGoogle Scholar
  72. 72.
    Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005;6:R82. doi: 10.1186/gb-2005-6-10-r82.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, et al. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell. 2009;36:39–50. doi: 10.1016/j.molcel.2009.09.022.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Merchant JL. Hedgehog signalling in gut development, physiology and cancer. J Physiol. 2012;590(Pt 3):421–32. doi: 10.1113/jphysiol.2011.220681.PubMedGoogle Scholar
  75. 75.
    Zeng C, Wang Y, Lu Q, Chen J, Zhang J, Liu T, et al. SPOP suppresses tumorigenesis by regulating Hedgehog/Gli2 signaling pathway in gastric cancer. J Exp Clin Cancer Res. 2014;33:75. doi: 10.1186/s13046-014-0075-8.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Zeng Q, Zhang L, Wang B, Ou CY, Chien CT, Jiang J. A Hedgehog-induced BTB protein modulates Hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell. 2006;10:710–29. doi: 10.1016/j.devcel.2006.05.004.Google Scholar
  77. 77.
    Kim MS, Je EM, Oh JE, Yoo NJ, Lee SH. Mutational and expressional analyses of SPOP, a candidate tumor suppressor gene, in prostate, gastric and colorectal cancers. APMIS. 2013;121:626–33. doi: 10.1111/apm.12030.PubMedGoogle Scholar
  78. 78.
    Lee J, Zhou P. Pathogenic role of the CRL4 ubiquitin ligase in human disease. Front Oncol. 2012;2:21. doi: 10.3389/fonc.2012.00021.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Kerzendorfer C, Whibley A, Carpenter G, Outwin E, Chiang SC, Turner G, et al. Mutations in Cullin 4B result in a human syndrome associated with increased camptothecin-induced topoisomerase I-dependent DNA breaks. Hum Mol Genet. 2010;19:1324–34. doi: 10.1093/hmg/ddq008.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kerzendorfer C, Hart L, Colnaghi R, Carpenter G, Alcantara D, Outwin E, et al. CUL4B-deficiency in humans: understanding the clinical consequences of impaired Cullin 4-RING E3 ubiquitin ligase function. Mech Ageing Dev. 2011;132:366–73. doi: 10.1016/j.mad.2011.02.003.PubMedGoogle Scholar
  81. 81.
    Hannah J, Zhou PB. The CUL4A ubiquitin ligase is a potential therapeutic target in skin cancer and other malignancies. Chin J Cancer. 2013;32:478–82. doi: 10.5732/cjc.012.10279.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Hung MS, Mao JH, Xu Z, Yang CT, Yu JS, Harvard C, et al. Cul4A is an oncogene in malignant pleural mesothelioma. J Cell Mol Med. 2011;15:350–8. doi: 10.1111/j.1582-4934.2009.00971.x.PubMedGoogle Scholar
  83. 83.
    Xu Y, Wang Y, Ma G, Wang Q, Wei G. CUL4A is overexpressed in human pituitary adenomas and regulates pituitary tumor cell proliferation. J Neurooncol. 2014;116:625–32. doi: 10.1007/s11060-013-1349-2.PubMedGoogle Scholar
  84. 84.
    Wang Y, Wen M, Kwon Y, Xu Y, Liu Y, Zhang P, et al. CUL4A induces epithelial-mesenchymal transition and promotes cancer metastasis by regulating ZEB1 expression. Cancer Res. 2014;74:520–31. doi: 10.1158/0008-5472.CAN-13-2182.PubMedGoogle Scholar
  85. 85.
    Wang Y, Ma G, Wang Q, Wen M, Xu Y, He X, et al. Involvement of CUL4A in regulation of multidrug resistance to P-gp substrate drugs in breast cancer cells. Molecules. 2013;19:159–76. doi: 10.3390/molecules19010159.PubMedGoogle Scholar
  86. 86.
    Ren S, Xu C, Cui Z, Yu Y, Xu W, Wang F, et al. Oncogenic CUL4A determines the response to thalidomide treatment in prostate cancer. J Mol Med (Berl). 2012;90:1121–32. doi: 10.1007/s00109-012-0885-0.Google Scholar
  87. 87.
    Thirunavukarasou A, Singh P, Govindarajalu G, Bandi V, Baluchamy S. E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation. Mol Cell Biochem. 2014;390:93–100. doi: 10.1007/s11010-014-1960-3.PubMedGoogle Scholar
  88. 88.
    Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 2007;26:775–80. doi: 10.1016/j.molcel.2007.06.001.PubMedGoogle Scholar
  89. 89.
    Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T, et al. L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle. 2014;5:1719–29. doi: 10.4161/cc.5.15.3150.Google Scholar
  90. 90.
    Mendoza M, Mandani G, Momand J. The MDM2 gene family. Biomol Concepts. 2014;5:9–19. doi: 10.1515/bmc-2013-0027.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Nag A, Bagchi S, Raychaudhuri P. Cul4A physically associates with MDM2 and participates in the proteolysis of p53. Cancer Res. 2004;64:8152–5. doi: 10.1158/0008-5472.CAN-04-2598.PubMedGoogle Scholar
  92. 92.
    Shen W, Hu P, Cao JQ, Liu XX, Shao JH. MDM2 oncogene, E3 ubiquitin protein ligase T309G polymorphism and risk of oesophageal or gastric cancer: meta-analysis of 15 studies. J Int Med Res. 2014;42:1065–76. doi: 10.1177/0300060514527910.PubMedGoogle Scholar
  93. 93.
    Li YF, Wang DD, Zhao BW, Wang W, Huang CY, Chen YM, et al. High level of COP1 expression is associated with poor prognosis in primary gastric cancer. Int J Biol Sci. 2012;8:1168–77. doi: 10.7150/ijbs.4778.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Sawada G, Ueo H, Matsumura T, Uchi R, Ishibashi M, Mima K, et al. Loss of COP1 expression determines poor prognosis in patients with gastric cancer. Oncol Rep. 2013;30:1971–5. doi: 10.3892/or.2013.2664.PubMedGoogle Scholar
  95. 95.
    Jackson PK. Regulating microtubules and genome stability via the CUL7/3M syndrome complex and CUL9. Mol Cell. 2014;54:713–5. doi: 10.1016/j.molcel.2014.05.024.PubMedGoogle Scholar
  96. 96.
    Guo H, Wu F, Wang Y, Yan C, Su W. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53. Biochem Biophys Res Commun. 2014;450:1370–6. doi: 10.1016/j.bbrc.2014.06.134.PubMedGoogle Scholar
  97. 97.
    Xu X, Sarikas A, Dias-Santagata DC, Dolios G, Lafontant PJ, Tsai SC, et al. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell. 2008;30:403–14. doi: 10.1016/j.molcel.2008.03.009.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Kuo KL, Ho IL, Shih TH, Wu JT, Lin WC, Tsai YC, et al. MLN4924, a novel protein neddylation inhibitor, suppresses proliferation and migration of human urothelial carcinoma: In vitro and in vivo studies. Cancer Lett. 2015;363:127–36. doi: 10.1016/j.canlet.2015.01.015.PubMedGoogle Scholar
  99. 99.
    Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–6. doi: 10.1038/nature07884.PubMedGoogle Scholar
  100. 100.
    Arias EE, Walter JC. Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev. 2005;19:114–26. doi: 10.1101/gad.1255805.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Li X, Zhao Q, Liao R, Sun P, Wu X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem. 2003;278:30854–8. doi: 10.1074/jbc.C300251200.PubMedGoogle Scholar
  102. 102.
    Abbas T, Mueller AC, Shibata E, Keaton M, Rossi M, Dutta A. CRL1-FBXO11 promotes Cdt2 ubiquitination and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol Cell. 2013;49:1147–58. doi: 10.1016/j.molcel.2013.02.003.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of General SurgeryThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople’s Republic of China

Personalised recommendations