Tumor Biology

, Volume 37, Issue 1, pp 1–6 | Cite as

Hsp90 regulates autophagy and plays a role in cancer therapy

Review

Abstract

Nowadays, heat shock protein 90 (Hsp90), a highly conserved molecular chaperone, has become the target of antitumor drugs as a result of its close relationship with the occurrence and development, biological behavior, and prognosis of a tumor. Autophagy has attracted big attention recently for its paradoxical roles in cell survival and cell death, especially in the pathogenesis and treatment of cancer. Moreover, it has been verified that Hsp90 plays a role in autophagy via regulating the stability and activity of signaling proteins, and some Hsp90 inhibitors can induce autophagy. However, the underlying mechanisms for these important processes have not been clarified so far. In this study, we focus on the roles of Hsp90 in the regulation of autophagy, such as toll-like receptor (TLR)-mediated autophagy, Ulk1-mediated mitophagy, and chaperone-mediated autophagy (CMA). The roles of Hsp90 inhibitors in cancer therapy will also be elucidated.

Keywords

Hsp90 Autophagy Mitophagy CMA Hsp90 inhibition 

Notes

Acknowledgments

This work was supported by NSFC (nos. 31370837 and 81573082), Program for New Century Excellent Talents in University (Ministry of Education), China. Thanks are given to Abu Baker Qased for the final revision of this manuscript.

This research is supported by NSFC (31370837 and 81573082), Provincial Program of Science and Technology of Jilin (20150101142JC).

Conflicts of interest

None

References

  1. 1.
    Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.CrossRefPubMedGoogle Scholar
  2. 2.
    Taipale M, Jarosz DF, Lindquist S. Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Bio. 2010;11:515–28.CrossRefGoogle Scholar
  3. 3.
    Fearns C, Pan Q, Mathison JC, Chuang TH. Triad3a regulates ubiquitination and proteasomal degradation of rip1 following disruption of HSP90 binding. J Biol Chem. 2006;281:34592–600.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of HSP90. J Mol Med-Jmm. 2004;82:488–99.Google Scholar
  5. 5.
    Haupt A, Joberty G, Bantscheff M, Frohlich H, Stehr H, Schweiger MR, et al. Hsp90 inhibition differentially destabilises map kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics. BMC Cancer. 2012;12:38.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R. Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treatment Reviews. 2013;39:375–87.CrossRefPubMedGoogle Scholar
  7. 7.
    Workman P, Burrows F, Neckers L, Rosen N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann NY Acad Sci. 2007;1113:202–16.CrossRefPubMedGoogle Scholar
  8. 8.
    Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang B, Chen L, Ni Z, Dai X, Qin L, Wu Y, et al. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (−)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells. Exp Cell Res. 2014;328:379–87.CrossRefPubMedGoogle Scholar
  11. 11.
    Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy. 2007;3:635–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014;24:69–79.CrossRefPubMedGoogle Scholar
  13. 13.
    Randhawa R, Sehgal M, Singh TR, Duseja A, Changotra H. Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy. Gene. 2015;562:40–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Rout AK, Strub MP, Piszczek G, Tjandra N. Structure of transmembrane domain of lysosomal-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone mediated autophagy. J Biol Chem. 2014;289(51):35111–23.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Babik W, Dudek K, Fijarczyk A, Pabijan M, Stuglik M, Szkotak R, et al. Constraint and adaptation in newt toll-like receptor genes. Genome Biol Evol. 2014;7(1):81–95.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Skabytska Y, Wolbing F, Gunther C, Koberle M, Kaesler S, Chen KM, et al. Cutaneous innate immune sensing of toll-like receptor 2–6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity. 2014;41:762–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee MS, Min YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem. 2007;76:447–80.CrossRefPubMedGoogle Scholar
  18. 18.
    Sasai M, Yamamoto M. Pathogen recognition receptors: ligands and signaling pathways by toll-like receptors. International reviews of immunology. 2013;32:116–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Huang J, Brumell JH. Autophagy in immunity against intracellular bacteria. Curr Top Microbiol. 2009;335:189–215.Google Scholar
  20. 20.
    Muenz C. Enhancing immunity through autophagy. Annu Rev Immunol. 2009;27:423–49.CrossRefGoogle Scholar
  21. 21.
    Xu Y, Liu XD, Gong X, Eissa NT. Signaling pathway of autophagy associated with innate immunity. Autophagy. 2008;4:110–2.CrossRefPubMedGoogle Scholar
  22. 22.
    Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem. 2008;283:33175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH. Functional interaction of heat shock protein 90 and Beclin 1 modulates toll-like receptor-mediated autophagy. FASEB J. 2011;25:2700–10.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Young CN, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11:113–30.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000;10:524–30.CrossRefPubMedGoogle Scholar
  26. 26.
    de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen. 2010;51:391–405.PubMedGoogle Scholar
  27. 27.
    Bhatia-Kissova I, Camougrand N. Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res. 2010;10:1023–34.CrossRefPubMedGoogle Scholar
  28. 28.
    Hirota Y, Aoki Y, Kanki T. Mitophagy: selective degradation of mitochondria by autophagy. Seikagaku. 2011;83:126–30.PubMedGoogle Scholar
  29. 29.
    Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Molecular cell. 2011;43:572–85.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    MacLean M, Picard D. Cdc37 goes beyond HSP90 and kinases. Cell Stress Chaperones. 2003;8:114–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW, et al. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell. 2004;116:87–98.CrossRefPubMedGoogle Scholar
  32. 32.
    Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL, et al. Mapping the phosphorylation sites of Ulk1. J Proteome Res. 2009;8:5253–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12:119–U170.CrossRefPubMedGoogle Scholar
  34. 34.
    Weihofen A, Ostaszewski B, Minami Y, Selkoe DJ. Pink1 parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum Mol Genet. 2008;17:602–16.CrossRefPubMedGoogle Scholar
  35. 35.
    Chan EYW, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009;29:157–71.CrossRefPubMedGoogle Scholar
  36. 36.
    Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112:1493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang G, Mao Z. Chaperone-mediated autophagy: roles in neurodegeneration. Transl Neurodegener. 2014;3:20.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang L, Sun Y, Fei M, Tan C, Wu J, Zheng J, et al. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. Autophagy. 2014;10:1015–35.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006;73:205–35.CrossRefPubMedGoogle Scholar
  40. 40.
    Dohi E, Tanaka S, Seki T, Miyagi T, Hide I, Takahashi T, et al. Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int. 2012;60:431–42.CrossRefPubMedGoogle Scholar
  41. 41.
    Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 2003;13:137–45.CrossRefPubMedGoogle Scholar
  42. 42.
    Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell. 2004;15:3132–45.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. Embo J. 2007;26:313–24.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273:501–3.CrossRefPubMedGoogle Scholar
  45. 45.
    Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28:5747–63.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sharp S, Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006;95:323–48.CrossRefPubMedGoogle Scholar
  47. 47.
    Franke J, Eichner S, Zeilinger C, Kirschning A. Targeting heat-shock-protein 90 (HSP90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep. 2013;30:1299–323.CrossRefPubMedGoogle Scholar
  48. 48.
    Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med. 2002;8:S55–61.CrossRefPubMedGoogle Scholar
  49. 49.
    Powers MV, Workman P. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr-Relat Cancer. 2006;13:S125–35.CrossRefPubMedGoogle Scholar
  50. 50.
    Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H, et al. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 2015;46:47–54.PubMedGoogle Scholar
  51. 51.
    Geng M, Wang L, Chen X, Cao R, Li P. The association between chemosensitivity and Pgp, GST-pi and Topo II expression in gastric cancer. Diagn Pathol. 2013;8:198.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hadley KE, Hendricks DT. Use of NQO1 status as a selective biomarker for oesophageal squamous cell carcinomas with greater sensitivity to 17-AAG. BMC Cancer. 2014;14:334.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dudas J, Schartinger VH, Romani A, Schweigl G, Kordsmeyer K, Marta PI, et al. Cell cycle association and hypoxia regulation of excision repair cross complementation group 1 protein (ERCC1) in tumor cells of head and neck cancer. Tumour Biol. 2014;35:7807–19.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zaanan A, Dalban C, Emile JF, Blons H, Flejou JF, Goumard C, et al. ERCC1, XRCC1 and GSTP1 single nucleotide polymorphisms and survival of patients with colon cancer receiving oxaliplatin-based adjuvant chemotherapy. J Cancer. 2014;5:425–32.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang Z, Xie Z, Sun G, Yang P, Li J, Yang H, et al. Reversing drug resistance of cisplatin by HSP90 inhibitors in human ovarian cancer cells. Int J Clin Exp Med. 2015;8:6687–701.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Bodzek P, Partyka R, Damasiewicz-Bodzek A. Antibodies against HSP60 and HSP65 in the sera of women with ovarian cancer. J Ovarian Res. 2014;7:30.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sun Y, Xiao S, Chen J, Wang M, Zheng Z, Song S, et al. Heat shock protein 90 mediates the apoptosis and autophage in nicotinic-mycoepoxydiene-treated HeLa cells. Acta Biochim Biophys Sin (Shanghai). 2015;47:451–8.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Benli Wang
    • 1
  • Zongyan Chen
    • 1
  • Feifei Yu
    • 1
  • Qiao Chen
    • 1
  • Yuxi Tian
    • 1
  • Shumei Ma
    • 1
    • 2
  • Tiejun Wang
    • 3
  • Xiaodong Liu
    • 1
    • 4
  1. 1.Key Laboratory of Radiobiology (Ministry of Health), School of Public HealthJilin UniversityChangchunChina
  2. 2.Manitoba Institute of Cell BiologyUniversity of ManitobaWinnipegCanada
  3. 3.Department of Radiation Oncologythe 2nd Hospitals Jilin UniversityChangchunChina
  4. 4.Center for Radiological ResearchColumbia UniversityNew YorkUSA

Personalised recommendations