Tumor Biology

, Volume 36, Issue 12, pp 9137–9146 | Cite as

Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment

  • Christopher Bastianpillai
  • Neophytos Petrides
  • Taimur Shah
  • Stephanie Guillaumier
  • Hashim U. Ahmed
  • Manit Arya


Minimally invasive interventional therapies are evolving rapidly and their use for the treatment of solid tumours is becoming more extensive. The in situ destruction of solid tumours by such therapies is thought to release antigens that can prime an antitumour immune response. In this review, we offer an overview of the current evidence for immune response activation associated with the utilisation of the main thermal and non-thermal ablation therapies currently in use today. This is followed by an assessment of the hypothesised mechanisms behind this immune response priming and by a discussion of potential methods of harnessing this specific response, which may subsequently be applicable in the treatment of cancer patients. References were identified through searches of PubMed/MEDLINE and Cochrane databases to identify peer-reviewed original articles, meta-analyses and reviews. Papers were searched from 1850 until October 2014. Articles were also identified through searches of the authors’ files. Only papers published in English were reviewed. Thermal and non-thermal therapies have the potential to stimulate antitumour immunity although the current body of evidence is based mostly on murine trials or small-scale phase 1 human trials. The evidence for this immune-modulatory response is currently the strongest in relation to cryotherapy and radiotherapy, although data is accumulating for related ablative treatments such as high-intensity focused ultrasound, radiofrequency ablation and irreversible electroporation. This effect may be greatly enhanced by combining these therapies with other immunostimulatory interventions. Evidence is emerging into the immunomodulatory effect associated with thermal and non-thermal ablative therapies used in cancer treatment in addition to the mechanism behind this effect and how it may be harnessed for therapeutic use. A potential exists for treatment approaches that combine ablation of the primary tumour with control and possible eradication of persistent, locally recurrent and metastatic disease. However, more work is needed into each of these modalities, initially in further animal studies and then subsequently in large-scale prospective human studies.


Cryotherapy Radiofrequency ablation RFA High-intensity focused ultrasound HiFU Electroporation Microwave Photodynamic therapy Low-intensity focused ultrasound LoFU Radiotherapy Oncology Cancer Carcinoma Immune 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Arnott J. Practical illustrations of the remedial efficacy of a very low or anaesthetic temperature—I. In cancer. The Lancet. 1850;56(1409):257–9.CrossRefGoogle Scholar
  2. 2.
    Yantorno C, Soanes WA, Gonder MJ, Shulman S. Studies in cryo-immunology. I. The production of antibodies to urogenital tissue in consequence of freezing treatment. Immunology. 1967;12(4):395–410.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Soanes WA, Ablin RJ, Gonder MJ. Remission of metastatic lesions following cryosurgery in prostatic cancer: immunologic considerations. J Urol. 1970;104(1):154–9.PubMedGoogle Scholar
  4. 4.
    Blackwood C, Cooper I. Response of experimental tumor systems to cryosurgery. Cryobiology. 1972;9(6):508–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Bagley DH, Faraci RP, Marrone JC, Beazley RM. Lymphocyte mediated cytotoxicity after cryosurgery of a murine sarcoma. J Surg Res. 1974;17(6):404–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Hoffmann NE, Coad JE, Huot CS, Swanlund DJ, Bischof JC. Investigation of the mechanism and the effect of cryoimmunology in the Copenhagen rat. Cryobiology. 2001;42(1):59–68.CrossRefPubMedGoogle Scholar
  7. 7.
    Yamashita T, Hayakawa K, Hosokawa M, Kodama T, Inoue N, Tomita K, et al. Enhanced tumor metastases in rats following cryosurgery of primary tumor. Gann. 1982;73(2):222–8.PubMedGoogle Scholar
  8. 8.
    Wu F, Zhou L, Chen WR. Host antitumour immune responses to HIFU ablation. International Journal of Hyperthermia. 2007;23(2):165–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Yang R, Reilly CR, Rescorla FJ, Sanghvi NT, Fry FJ, Franklin Jr TD, et al. Effects of high-intensity focused ultrasound in the treatment of experimental neuroblastoma. J Pediatr Surg. 1992;27(2):246–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Rosberger DF, Coleman DJ, Silverman R, Woods S, Rondeau M, Cunningham-Rundles S. Immunomodulation in choroidal melanoma: reversal of inverted CD4/CD8 ratios following treatment with ultrasonic hyperthermia. Biotechnol Ther. 1994;5(1–2):59–68.PubMedGoogle Scholar
  11. 11.
    Wu F, Wang Z, Lu P, Xu Z, Chen W, Zhu H, et al. Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med Biol. 2004;30(9):1217–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou Q, Zhu X, Zhang J, Xu Z, Lu P, Wu F. Changes in circulating immunosuppressive cytokine levels of cancer patients after high intensity focused ultrasound treatment. Ultrasound Med Biol. 2008;34(1):81–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Deng J, Feng J, Wu F. Enhancement of antitumor vaccine in ablated hepatocellular carcinoma by high-intensity focused ultrasound. World J Gastroenterol. 2010;16(28):3584–91.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hu Z, Yang XY, Liu Y, Morse MA, Lyerly HK, Clay TM, et al. Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs. Biochem Biophys Res Commun. 2005;335(1):124–31.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hu Z, Yang XY, Liu Y, Sankin GN, Pua EC, Morse MA, et al. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med. 2007;5(1):34.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Van Leenders GJ, Beerlage HP, Ruijter ET, de la Rosette JJ, van de Kaa CA. Histopathological changes associated with high intensity focused ultrasound (HIFU) treatment for localised adenocarcinoma of the prostate. J Clin Pathol. 2000;53(5):391–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kramer G, Steiner GE, Gröbl M, Hrachowitz K, Reithmayr F, Paucz L, et al. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T‐cells. Prostate. 2004;58(2):109–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Pockley AG. Heat shock proteins as regulators of the immune response. The Lancet. 2003;362(9382):469–76.CrossRefGoogle Scholar
  19. 19.
    Davalos RV, Mir L, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005;33(2):223–31.CrossRefPubMedGoogle Scholar
  20. 20.
    André F, Connault E, Opolon P, Davalos R, Mir L. A study of the immunological response to tumor ablation with irreversible electroporation. Technol Cancer Res Treat. 2007;6(4):301–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Rubinsky B. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 2007;6(4).Google Scholar
  22. 22.
    Li X, Xu K, Li W, Qiu X, Ma B, Fan Q, et al. Immunologic response to tumor ablation with irreversible electroporation. PloS one. 2012;7(11):e48749.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Neal II RE, Rossmeisl Jr JH, Robertson JL, Arena CB, Davis EM, Singh RN, et al. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice. PloS One. 2013;8(5):e64559.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wissniowski TT, Hansler J, Neureiter D, Frieser M, Schaber S, Esslinger B, et al. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res. 2003;63(19):6496–500.PubMedGoogle Scholar
  25. 25.
    den Brok MH, Sutmuller RP, van der Voort R, Bennink EJ, Figdor CG, Ruers TJ, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res. 2004;64(11):4024–9.CrossRefGoogle Scholar
  26. 26.
    Zerbini A, Pilli M, Penna A, Pelosi G, Schianchi C, Molinari A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res. 2006;66(2):1139–46.CrossRefPubMedGoogle Scholar
  27. 27.
    GERDSCHUELLER JK, SEDIVY R, BERGMEISTER H, STIFT A, FRIED J, GNANT M, et al. Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model. Oncol Rep. 2004;12:495–9.Google Scholar
  28. 28.
    Schueller G, Kettenbach J, Sedivy R, Stift A, Friedl J, Gnant M, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol. 2004;24(3):609–13.PubMedGoogle Scholar
  29. 29.
    Dromi SA, Walsh MP, Herby S, Traughber B, Xie J, Sharma KV, et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity 1. Radiology. 2009;251(1):58–66.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Napoletano C. RFA strongly modulates the immune system and anti-tumor immune responses in metastatic liver patients. Int J Oncol. 2008;32(2):481–90.PubMedGoogle Scholar
  31. 31.
    Seki T, Wakabayashi M, Nakagawa T, Itho T, Shiro T, Kunieda K, et al. Ultrasonically guided percutaneous microwave coagulation therapy for small hepatocellular carcinoma. Cancer. 1994;74(3):817–25.CrossRefPubMedGoogle Scholar
  32. 32.
    Nakayama J, Kokuba H, Kobayashi J, Yoshida Y, Hori Y. Experimental approaches for the treatment of murine B16 melanomas of various sizes. II: injection of ethanol with combinations of β-interferon and microwaval hyperthermia for B16 melanomas with a size of greater than 10 mm in diameter. J Dermatol Sci. 1997;15(2):82–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Dong B, Zhang J, Liang P, Yu X, Su L, Yu D, et al. Influencing factors of local immunocyte infiltration in hepatocellular carcinoma tissues pre- and post-percutaneous microwave coagulation therapy. Zhonghua Yi Xue Za Zhi. 2002;82(6):393–7.PubMedGoogle Scholar
  34. 34.
    Zhang J, Dong B, Liang P, Yu X, Su L, Yu D, et al. Significance of changes in local immunity in patients with hepatocellular carcinoma after percutaneous microwave coagulation therapy. Chin Med J (Engl). 2002;115(9):1367–71.Google Scholar
  35. 35.
    Szmigielski S, Sobczynski J, Sokolska G, Stawarz B, Zielinski H, Petrovich Z. Effects of local prostatic hyperthermia on human NK and T cell function. International Journal of Hyperthermia. 1991;7(6):869–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Dong BW, Zhang J, Liang P, Yu X, Su L, Yu D, et al. Sequential pathological and immunologic analysis of percutaneous microwave coagulation therapy of hepatocellular carcinoma. International Journal of Hyperthermia. 2003;19(2):119–33.CrossRefPubMedGoogle Scholar
  37. 37.
    Evans S, Matthews W, Perry R, Fraker D, Norton J, Pass HI. Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages. J Natl Cancer Inst. 1990;82(1):34–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Steubing RW, Yeturu S, Tuccillo A, Sun C, Berns M. Activation of macrophages by Photofrin II during photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology. 1991;10(1):133–45.CrossRefGoogle Scholar
  39. 39.
    Chen WR, Zhu W, Dynlacht JR, Liu H, Nordquist RE. Long‐term tumor resistance induced by laser photo‐immunotherapy. International Journal of Cancer. 1999;81(5):808–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Korbelik M, Krosl G, Krosl J, Dougherty GJ. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy. Cancer Res. 1996;56(24):5647–52.PubMedGoogle Scholar
  41. 41.
    Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res. 1998;150(5s):S146–56.CrossRefPubMedGoogle Scholar
  42. 42.
    Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 2005;65(3):1018–26.PubMedGoogle Scholar
  43. 43.
    Cecic I et al. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors. Cancer Lett. 2002;183(1):43–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Krosl G, Korbelik M, Krosl J, Dougherty GJ. Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocyte-macrophage colony-stimulating factor. Cancer Res. 1996;56(14):3281–6.PubMedGoogle Scholar
  45. 45.
    Golab J, Wilczynski G, Zagozdzon R, Stoklosa T, Dabrowska A, Rybczynska J, et al. Potentiation of the anti-tumour effects of Photofrin-based photodynamic therapy by localized treatment with G-CSF. Br J Cancer. 2000;82(8):1485–91.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang H, Sun M, Guha D, Liu L, Alfieri A, Guha C. Generation of tumor specific immune response with therapeutic focused ultrasound. Cancer Res. 2010;70(8 Supplement):5630.CrossRefGoogle Scholar
  47. 47.
    Immune system modulation with LOFU and HIFU treatment of prostate cancer. 10th International Symposium on Therapeutic Ultrasound (ISTU 2010): AIP Publishing; 2011Google Scholar
  48. 48.
    Slone HB, Peters LJ, Milas L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst. 1979;63(5):1229–35.Google Scholar
  49. 49.
    Apetoh L, Ghiringhelli F, Zitvogel L. Calreticulin dictates the immunogenicity of anti-cancer chemotherapy and radiotherapy. Med Sci (Paris). 2007;23(3):257–8.CrossRefGoogle Scholar
  50. 50.
    Formenti SC, Demaria S. Systemic effects of local radiotherapy. The Lancet Oncology. 2009;10(7):718–26.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181(5):3099–107.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180(5):3132–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Mole R. Whole body irradiation—radiobiology or medicine?*. Br J Radiol. 1953;26(305):234–41.CrossRefPubMedGoogle Scholar
  55. 55.
    Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, et al. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut. 1998;43(4):575–7.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Antoniades J, Brady LW, Lightfoot DA. Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. International Journal of Radiation Oncology* Biology* Physics. 1977;2(1):141–7.CrossRefGoogle Scholar
  57. 57.
    Rees G, Ross C. Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol. 1983;56(661):63–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Ehlers G, Fridman M. Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol. 1973;46(543):220–2.CrossRefPubMedGoogle Scholar
  59. 59.
    Von Essen C. Radiation enhancement of metastasis: a review. Clin Exp Metastasis. 1991;9(2):77–104.CrossRefGoogle Scholar
  60. 60.
    Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J, et al. Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 2003;63(8):1990–3.PubMedGoogle Scholar
  61. 61.
    Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Budhu S, Loike JD, Pandolfi A, Han S, Catalano G, Constantinescu A, et al. CD8+ T cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells in vitro and in mouse tissues. J Exp Med. 2010;207(1):223–35.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA. Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest. 1994;93(2):892–9.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kachikwu EL, Iwamoto KS, Liao Y, DeMarco JJ, Agazaryan N, Economou JS, et al. Radiation enhances regulatory T cell representation. International Journal of Radiation Oncology* Biology* Physics. 2011;81(4):1128–35.CrossRefGoogle Scholar
  65. 65.
    Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12(1):991–1045.CrossRefPubMedGoogle Scholar
  66. 66.
    Sabel MS, Su G, Griffith KA, Chang AE. Rate of freeze alters the immunologic response after cryoablation of breast cancer. Annals of Surgical Oncology. 2010;17(4):1187–93.CrossRefPubMedGoogle Scholar
  67. 67.
    Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology. 2009;58(1):1–11.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang HY, Wang R. Regulatory T cells and cancer. Curr Opin Immunol. 2007;19(2):217–23.CrossRefPubMedGoogle Scholar
  69. 69.
    Whiteside TL. The tumor microenviroment and its role in promoting tumour growth. Oncogene. 2010;27(45):1187–93.Google Scholar
  70. 70.
    Levy MY, Sidana A, Chowdhury WH, Solomon SB, Drake CG, Rodriguez R, et al. Cyclophosphamide unmasks an antimetastatic effect of local tumor cryoablation. J Pharmacol Exp Ther. 2009;330(2):596–601.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    den Brok M, Sutmuller RP, Nierkens S, Bennink EJ, Frielink C, Toonen LW, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer. 2006;95(7):896–905.CrossRefGoogle Scholar
  72. 72.
    Thakur A, Littrup P, Paul EN, Adam B, Heilbrun LK, Lum LG. Induction of specific cellular and humoral responses against renal cell carcinoma after combination therapy with cryoablation and granulocyte-macrophage colony stimulating factor: a pilot study. J Immunother. 2011;34(5):457–67.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Niu L et al. Combination treatment with comprehensive cryoablation and immunotherapy in metastatic pancreatic cancer. Pancreas. 2013;42(7):1143–9. doi: 10.1097/MPA.0b013e3182965dde.CrossRefPubMedGoogle Scholar
  74. 74.
    Niu L, Mu F, Zhang C, Li Y, Liu W, Jiang F, et al. Cryotherapy protocols for metastatic breast cancer after failure of radical surgery. Cryobiology. 2013;67(1):17–22.CrossRefPubMedGoogle Scholar
  75. 75.
    Liang Z, Fei Y, Lizhi N, Jianying Z, Zhikai Z, Jibing C, et al. Percutaneous cryotherapy for metastatic bladder cancer: experience with 23 patients. Cryobiology. 2014;68(1):79–83.CrossRefPubMedGoogle Scholar
  76. 76.
    Waitz R, Solomon SB, Petre EN, et al. Potent induction of tumour immunity by combining tumour cryoablation with anti-CTLA-4 therapy. Cancer Res. 2012;72(2):430–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Imai Y, Ishida M, Tanaka T et al. Involvement of PD-L1 on tumour cells in the escape from host immune system and tumour immunotherapy by PD-L1 blockade. Proc. Natl. Acad Sci. USA99(19), 12293–12297 (2002)Google Scholar
  78. 78.
    Nikitina EY, Gabrilovich DI. Combination of γ‐irradiation and dendritic cell administration induces a potent antitumor response in tumor‐bearing mice: approach to treatment of advanced stage cancer. International Journal of Cancer. 2001;94(6):825–33.CrossRefPubMedGoogle Scholar
  79. 79.
    Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Harris TJ, Hipkiss EL, Borzillary S, Wada S, Grosso JF, Yen H, et al. Radiotherapy augments the immune response to prostate cancer in a time‐dependent manner. Prostate. 2008;68(12):1319–29.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chi K, Liu S, Li C, Kuo H, Wang Y, Chao Y, et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. Journal of Immunotherapy. 2005;28(2):129–35.CrossRefPubMedGoogle Scholar
  82. 82.
    Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res. 2005;11(9):3353–62.CrossRefPubMedGoogle Scholar
  83. 83.
    Gameiro SR, Higgins JP, Dreher MR, Woods DL, Reddy G, Wood BJ, et al. Combination therapy with local radiofrequency ablation and systemic vaccine enhances antitumor immunity and mediates local and distal tumor regression. PLoS One. 2013;8(7):e70417.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Christopher Bastianpillai
    • 1
  • Neophytos Petrides
    • 1
    • 2
  • Taimur Shah
    • 1
  • Stephanie Guillaumier
    • 1
  • Hashim U. Ahmed
    • 1
  • Manit Arya
    • 1
    • 2
  1. 1.Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
  2. 2.Princess Alexandra HospitalHarlowUK

Personalised recommendations