Tumor Biology

, Volume 37, Issue 2, pp 2613–2619 | Cite as

Protein arginine methyltransferase 1 promoted the growth and migration of cancer cells in esophageal squamous cell carcinoma

  • Weizheng Zhou
  • Hui Yue
  • Chunguang Li
  • Hezhong Chen
  • Yang Yuan
Original Article


Dysregulation of protein arginine methyltransferase 1 (PRMT1) has been reported in several cancer types. However, its expression pattern and biological functions in esophageal squamous cell carcinoma (ESCC) remained unknown. Here, we have found that the expression of PRMT1 was up-regulated in ESCC samples. In the biological function studies, forced expression of PRMT1 promoted the growth and migration of ESCC cells. However, knocking down the expression of PRMT1 inhibited the growth, migration, and metastasis of ESCC cells. Moreover, PRMT1 activated Hedgehog signaling and up-regulated the expression of target genes downstream of Hedgehog signaling. Taken together, our study revealed the oncogenic roles of PRMT1 in the progression of ESCC, and PRMT1 might be a promising therapeutic target for the treatment of ESCC.


ESCC PRMT1 Hedgehog signaling Cell growth and migration 


Conflicts of interest



  1. 1.
    Baldwin RM, Morettin A, Cote J. Role of PRMTs in cancer: could minor isoforms be leaving a mark? World Journal of Biological Chemistry. 2014;5:115–29.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kleinschmidt MA, Streubel G, Samans B, Krause M, Bauer UM. The protein arginine methyltransferases CARM1 and PRMT1 cooperate in gene regulation. Nucleic Acids Res. 2008;36:3202–13.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yeh HY, Klesius PH. Molecular characterization, phylogenetic analysis and expression patterns of five protein arginine methyltransferase genes of channel catfish, ictalurus punctatus (rafinesque). Fish Physiol Biochem. 2012;38:1083–98.CrossRefPubMedGoogle Scholar
  4. 4.
    Nicholson TB, Chen T, Richard S. The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacol Res. 2009;60:466–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Guendel I, Carpio L, Pedati C, et al. Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function. PLoS One. 2010;5:e11379.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Benhenda S, Ducroux A, Riviere L, et al. Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol. 2013;87:4360–71.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Davies CC, Chakraborty A, Diefenbacher ME, Skehel M, Behrens A. Arginine methylation of the c-Jun coactivator RACO-1 is required for c-Jun/AP-1 activation. EMBO J. 2013;32:1556–67.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chaib H, Prebet T, Vey N, Collette Y. Histone methyltransferases: a new class of therapeutic targets in cancer treatment? Med Sci (Paris). 2011;27:725–32.CrossRefGoogle Scholar
  9. 9.
    Yoshimatsu M, Toyokawa G, Hayami S, et al. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer. 2011;128:562–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Baldwin RM, Bejide M, Trinkle-Mulcahy L, Cote J. Identification of the prmt1v1 and prmt1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells. Proteomics. 2015.Google Scholar
  11. 11.
    Baldwin RM, Morettin A, Paris G, Goulet I, Cote J. Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells. Cell Cycle. 2012;11:4597–612.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Avasarala S, Van Scoyk M, Karuppusamy Rathinam MK, et al. PRMT1 is a novel regulator of epithelial-mesenchymal-transition in non-small cell lung cancer. J Biol Chem. 2015;290:13479–89.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Papadokostopoulou A, Mathioudaki K, Scorilas A, et al. Colon cancer and protein arginine methyltransferase 1 gene expression. Anticancer Res. 2009;29:1361–6.PubMedGoogle Scholar
  14. 14.
    Goulet I, Gauvin G, Boisvenue S, Cote J. Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem. 2007;282:33009–21.CrossRefPubMedGoogle Scholar
  15. 15.
    DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Abidi A. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian Journal of Pharmacology. 2014;46:3–12.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ma X, Sheng T, Zhang Y, et al. Hedgehog signaling is activated in subsets of esophageal cancers. Int J Cancer. 2006;118:139–48.CrossRefPubMedGoogle Scholar
  18. 18.
    Ruch JM, Kim EJ. Hedgehog signaling pathway and cancer therapeutics: progress to date. Drugs. 2013;73:613–23.CrossRefPubMedGoogle Scholar
  19. 19.
    Saito T, Mitomi H, Yao T. Molecular pathology and potential therapeutic targets in esophageal basaloid squamous cell carcinoma. Int J Clin Exp Pathol. 2012;8:2267–73.Google Scholar
  20. 20.
    Yang L, Wang LS, Chen XL, et al. Hedgehog signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus. International Journal of Biochemistry and Molecular Biology. 2012;3:46–57.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Abdel-Rahman O. Hedgehog pathway aberrations and gastric cancer; evaluation of prognostic impact and exploration of therapeutic potentials. Tumour Biol. 2015;36:1367–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Ke Z, Caiping S, Qing Z, Xiaojing W. Sonic hedgehog-Gli1 signals promote epithelial-mesenchymal transition in ovarian cancer by mediating PI3K/AKT pathway. Medical Oncology (Northwood, London, England). 2015;32:368.CrossRefGoogle Scholar
  23. 23.
    Shin K, Lim A, Zhao C, et al. Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell. 2014;26:521–33.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jia J. Phosphorylation regulation of hedgehog signaling. Vitam Horm. 2012;88:253–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Gonnissen A, Isebaert S, Haustermans K. Targeting the hedgehog signaling pathway in cancer: beyond smoothened. Oncotarget. 2015.Google Scholar
  26. 26.
    Smoothened mutations underlie basal cell carcinoma resistance. Cancer Discov. 2015;5:OF9.Google Scholar
  27. 27.
    Dillon MB, Bachovchin DA, Brown SJ, et al. Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization. ACS Chem Biol. 2012;7:1198–204.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zakrzewicz D, Zakrzewicz A, Wilker S, et al. Dimethylarginine metabolism during acute and chronic rejection of rat renal allografts. Nephrol Dial Transplant. 2011;26:124–35.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Weizheng Zhou
    • 1
  • Hui Yue
    • 2
  • Chunguang Li
    • 1
  • Hezhong Chen
    • 1
  • Yang Yuan
    • 1
  1. 1.Department of Cardiothoracic Surgery, Changhai HospitalSecond Military Medical UniversityShanghaiChina
  2. 2.Department of Thoracic SurgeryThe Second People’s Hospital of HefeiHefeiChina

Personalised recommendations