Advertisement

Tumor Biology

, Volume 37, Issue 3, pp 3155–3161 | Cite as

The effect of bovine rotavirus and its nonstructural protein 4 on ER stress-mediated apoptosis in HeLa and HT-29 cells

  • Zahra Goodarzi
  • Hoorieh Soleimanjahi
  • Ehsan Arefian
  • Esmaeil Saberfar
Original Article

Abstract

Endoplasmic reticulum (ER) plays important roles in multiple cellular processes as well as cell survival and apoptosis. Perturbation of ER functions leads to ER stress and unfolded protein response (UPR). The primary goal of this response is cell survival, but severe ER stress can trigger apoptosis signaling. In tumor cells, chronically activated UPR response provides tumor growth. So, apoptosis induced by the ER stress has been the target for anti-cancer therapy. In this in vitro study, we examined the apoptotic effect associated with ER stress of bovine rotavirus and its nonstructural protein 4 (NSP4) alone in two cancer cell lines. The plasmid pcDNA3.1 encoding NSP4 protein of bovine rotavirus transfected with lipofectamine 2000 into the HeLa and HT-29 cells for protein production. MTT, flow cytometry, and Western blot were used to evaluate the cell viability, apoptosis, and expression level of C/EBP-homologous protein (CHOP) and activated caspase-4. In parallel, the apoptotic effect of the bovine rotavirus associated with ER stress in the infected cells was examined too. The cytotoxic and apoptotic effect of NSP4 protein on the cells were statistically significant compared to the control groups. However, Western blot showed that the expression of the NSP4 protein by recombinant plasmid did not lead to high expression of CHOP and activation of caspase-4. Interestingly, rotavirus not only induced significant apoptosis but also caused an increase in CHOP expression and caspase-4 activation in the infected cells compared to control. As a result, NSP4 protein and bovine rotavirus can be considered a potential novel bio-therapeutic strategy for cancer treatment.

Keywords

Apoptosis CHOP Caspase-4 Endoplasmic reticulum ER stress Rotavirus 

Notes

Acknowledgments

This study was supported partly by a grant from the Research Deputy of Tarbiat Modares University and partially was supported by a grant (89002201) which was sponsored by the Iran National Science Foundation (INSF). We gratefully acknowledge their supports and thank Dr. Saeed Soleyman-Jahi for editing the manuscript.

References

  1. 1.
    Martinon F. Targeting endoplasmic reticulum signaling pathways in cancer. Acta oncologica (Stockholm, Sweden). 2012;51(7):822–30.CrossRefGoogle Scholar
  2. 2.
    Bartlett JD, Luethy JD, Carlson SG, Sollott SJ, Holbrook NJ. Calcium ionophore A23187 induces expression of the growth arrest and DNA damage inducible CCAAT/enhancer-binding protein (C/EBP)-related gene, gadd153. Ca2+ increases transcriptional activity and mRNA stability. J Biol Chem. 1992;267(28):20465–70.PubMedGoogle Scholar
  3. 3.
    Matsuzaki S, Hiratsuka T, Kuwahara R, Katayama T, Tohyama M. Caspase-4 is partially cleaved by calpain via the impairment of Ca2+ homeostasis under the ER stress. Neurochem Int. 2010;56(2):352–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Oda T, Kosuge Y, Arakawa M, Ishige K, Ito Y. Distinct mechanism of cell death is responsible for tunicamycin-induced ER stress in SK-N-SH and SH-SY5Y cells. Neurosci Res. 2008;60(1):29–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197(7):857–67.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yadav RK, Chae SW, Kim HR, Chae HJ. Endoplasmic reticulum stress and cancer. J Cancer Prev. 2014;19(2):75–88.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007;67(22):10631–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang G, Yang ZQ, Zhang K. Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential. Am J Transl Res. 2010;2(1):65–74.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bergner A, Huber RM. Regulation of the endoplasmic reticulum Ca(2+)-store in cancer. Anti Cancer Agents Med Chem. 2008;8(7):705–9.CrossRefGoogle Scholar
  10. 10.
    Li N, Zheng L, Lin P, Danielpour D, Pan Z, Ma J. Overexpression of Bax induces down-regulation of store-operated calcium entry in prostate cancer cells. J Cell Physiol. 2008;216(1):172–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Kirkwood CD. Genetic and antigenic diversity of human rotaviruses: potential impact on vaccination programs. J Infect Dis. 2010;202(Suppl):S43–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Boshuizen JA, Reimerink JH, Korteland-van Male AM, van Ham VJ, Koopmans MP, Buller HA, et al. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol. 2003;77(24):13005–16.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chaibi C, Cotte-Laffitte J, Sandre C, Esclatine A, Servin AL, Quero AM, et al. Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells. Virology. 2005;332(2):480–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Superti F, Ammendolia MG, Tinari A, Bucci B, Giammarioli AM, Rainaldi G, et al. Induction of apoptosis in HT-29 cells infected with SA-11 rotavirus. J Med Virol. 1996;50(4):325–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Ruiz MC, Leon T, Diaz Y, Michelangeli F. Molecular biology of rotavirus entry and replication. Sci World J. 2009;9:1476–97.CrossRefGoogle Scholar
  16. 16.
    Zhang M, Zeng CQ, Morris AP, Estes MK. A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol. 2000;74(24):11663–70.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brunet JP, Cotte-Laffitte J, Linxe C, Quero AM, Geniteau-Legendre M, Servin A. Rotavirus infection induces an increase in intracellular calcium concentration in human intestinal epithelial cells: role in microvillar actin alteration. J Virol. 2000;74(5):2323–32.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hyser JM, Collinson-Pautz MR, Utama B, Estes MK. Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 2010;1(5).Google Scholar
  19. 19.
    Goodarzi Z, Soleimanjahi, H ., Saberfar, E ., Teimoori, A ., Razavi, H Peptide based polyclonal antibody production against bovine rotavirus non structure protein4 (NSP4) Archives of Razi Institute in press.Google Scholar
  20. 20.
    Teimoori A, Soleimanjahi H, Makvandi M. Characterization and transferring of human rotavirus double-layered particles in MA104 cells. Jundishapur J Microbiol. 2014;7(6), e10375.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Razavinikoo H, Soleimanjahi H, Haqshenas G, Bamdad T, Teimoori A, Goodarzi Z. Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression. Iranian J Basic Med Sci. 2015;18(4):393.Google Scholar
  22. 22.
    Tian P, Estes MK, Hu Y, Ball JM, Zeng CQ, Schilling WP. The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J Virol. 1995;69(9):5763–72.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Diaz Y, Chemello ME, Pena F, Aristimuno OC, Zambrano JL, Rojas H, et al. Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells. J Virol. 2008;82(22):11331–43.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Michelangeli F, Liprandi F, Chemello ME, Ciarlet M, Ruiz MC. Selective depletion of stored calcium by thapsigargin blocks rotavirus maturation but not the cytopathic effect. J Virol. 1995;69(6):3838–47.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Halasz P, Holloway G, Coulson BS. Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection. J Gen Virol. 2010;91(Pt 8):2007–18.CrossRefPubMedGoogle Scholar
  26. 26.
    Martin-Latil S, Mousson L, Autret A, Colbere-Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007;81(9):4457–64.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bhowmick R, Halder UC, Chattopadhyay S, Chanda S, Nandi S, Bagchi P, et al. Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. J Biol Chem. 2012;287(42):35004–20.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hyser JM, Utama B, Crawford SE, Broughman JR, Estes MK. Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J Virol. 2013;87(24):13579–88.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harbor perspectives in biology 2011;3(6).Google Scholar
  30. 30.
    Sergeev IN. Calcium signaling in cancer and vitamin D. J Steroid Biochem Mol Biol. 2005;97(1-2):145–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem. 2006;281(23):16016–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Rojas C, Pan-Castillo B, Valls C, Pujadas G, Garcia-Vallve S, Arola L, et al. Resveratrol enhances palmitate-induced ER stress and apoptosis in cancer cells. PLoS One. 2014;9(12), e113929.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schonthal AH. Targeting endoplasmic reticulum stress for cancer therapy. Front Biosci (Schol Ed). 2012;4:412–31.CrossRefGoogle Scholar
  34. 34.
    Park IJ, Kim MJ, Park OJ, Choe W, Kang I, Kim SS, et al. Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells. Apoptosis Int J Programmed Cell Death. 2012;17(3):248–57.CrossRefGoogle Scholar
  35. 35.
    Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, et al. Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol. 2003;77(18):9969–78.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cai W, Chen X. Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anti Cancer Agents Med Chem. 2006;6(5):407–28.CrossRefGoogle Scholar
  37. 37.
    Liu D, Wang C, Li C, Zhang X, Zhang B, Mi Z, et al. Production and characterization of a humanized single-chain antibody against human integrin alphav beta3 protein. J Biol Chem. 2011;286(27):24500–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Juhasz K, Lipp AM, Nimmervoll B, Sonnleitner A, Hesse J, Haselgruebler T, et al. The complex function of hsp70 in metastatic cancer. Cancers. 2013;6(1):42–66.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Murphy ME. The HSP70 family and cancer. Carcinogenesis. 2013;34(6):1181–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu Z, Wang F, Chen X. Integrin αvβ3‐targeted cancer therapy. Drug Dev Res. 2008;69(6):329–39.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Singh PK, Doley J, Kumar GR, Sahoo AP, Tiwari AK. Oncolytic viruses & their specific targeting to tumour cells. Indian J Med Res. 2012;136(4):571–84.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Sherry B. Rotavirus and reovirus modulation of the interferon response. J Interf Cytokine Res Off J Int Soc Interf Cytokine Res. 2009;29(9):559–67.CrossRefGoogle Scholar
  43. 43.
    Arnold MM, Patton JT. Diversity of interferon antagonist activities mediated by NSP1 proteins of different rotavirus strains. J Virol. 2011;85(5):1970–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Zahra Goodarzi
    • 1
  • Hoorieh Soleimanjahi
    • 1
  • Ehsan Arefian
    • 2
  • Esmaeil Saberfar
    • 3
  1. 1.Department of Virology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
  3. 3.Research and Development DepartmentBayerpaul GroupTehranIran

Personalised recommendations