Tumor Biology

, Volume 37, Issue 2, pp 2655–2663 | Cite as

Osteopontin splice variants expression is involved on docetaxel resistance in PC3 prostate cancer cells

  • K. D. M. Nakamura
  • T. M. Tilli
  • J. L. Wanderley
  • A. PalumboJr.
  • R. M. Mattos
  • A. C. Ferreira
  • C. E. Klumb
  • L. E. Nasciutti
  • E. R. Gimba
Original Article

Abstract

Osteopontin (OPN) is a phosphoprotein that activates several aspects of tumor progression. Alternative splicing of the OPN primary transcript generates three splicing isoforms, OPNa, OPNb and OPNc. In this report, we investigated some cellular mechanisms by which OPN splice variants could mediate PC3 prostate cancer (PCa) cell survival and growth in response to docetaxel (DXT)-induced cell death. Cell survival before and after DXT treatment was analyzed by phase-contrast microscopy and crystal-violet staining assays. Quantitative real-time PCR and immunocytochemical staining assays were used to evaluate the putative involvement of epithelial-mesenchymal transition (EMT) and OPN isoforms on mediating PC3 cell survival. Upon DXT treatment, PC3 cells overexpressing OPNb or OPNc isoforms showed higher cell densities, compared to cells overexpressing OPNa and controls. Notably, cells overexpressing OPNb or OPNc isoforms showed a downregulated pattern of EMT epithelial cell markers, while mesenchymal markers were mostly upregulated in these experimental conditions. We concluded that OPNc or OPNb overexpression in PC3 cells can mediate resistance and cell survival features in response to DXT-induced cell death. Our data also provide evidence the EMT program could be one of the molecular mechanisms mediating survival in OPNb- or OPNc-overexpressing cells in response to DXT treatment. These data could further contribute to a better understanding of the mechanisms by which PCa cells acquire resistance to DXT treatment.

Keywords

Osteopontin Splicing isoforms Prostate cancer Docetaxel Cell survival 

Notes

Acknowledgments

We thank the financial support FAPERJ, CNPq, CAPES, Swiss Bridge Foundation, and INCT for Cancer Research for financial support.

References

  1. 1.
    Weber GF. The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta. 2001;1552:61–85.CrossRefPubMedGoogle Scholar
  2. 2.
    Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 2006;16:79–87.CrossRefPubMedGoogle Scholar
  3. 3.
    Johnston NI, Gunasekharan VK, Ravindranath A, El-Tanani MK, et al. Osteopontin as a target for cancer therapy. Front Biosci. 2008;13:4361–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Shevde LA, Das S, Clark DW, Samant RS. Osteopontin: an effector and an effect of tumor metastasis. Curr Mol Med. 2010;10:71–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Ivanov S, Ivanova AV, Goparaju CM, Pass HI, et al. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma. Biochem Biophys Res Commun. 2009;8:514–8.CrossRefGoogle Scholar
  6. 6.
    Anborgh PH, Mutrie JC, Tuck AB, Chambers AF. Pre- and post-translational regulation of osteopontin in cancer. J Cell Commun Signal. 2011;5:111–22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    He B, Mirza M, Weber GF. An osteopontin splice variant induces anchorage independence in human breast cancer. Oncogene. 2006;25:2192–202.CrossRefPubMedGoogle Scholar
  8. 8.
    Gimba ER, Tilli TM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett. 2013;331:11–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Blasberg J, Goparaju CM, Pass HI, Donington JS. Lung cancer osteopontin isoforms exhibit angiogenic functional heterogeneity. J Thorac Cardiovasc Surg. 2009;139:1587–93.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mirza M, Shaughnessy E, Hurleym JK, Vanpattenm KA, Weber GF, et al. Osteopontin-c is a selective marker for breast cancer. Int J Cancer. 2008;122:889–97.CrossRefPubMedGoogle Scholar
  11. 11.
    Tilli TM, Mello KD, Ferreira LB, Matos AR, Accioly MT, Gimba ER. Both osteopontin-c and osteopontin-b splicing isoforms exert pro-tumorigenic roles in prostate cancer cells. Prostate. 2012;72:1688–99.CrossRefPubMedGoogle Scholar
  12. 12.
    Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2:339–45.CrossRefPubMedGoogle Scholar
  13. 13.
    Puhr M, Hoefer J, Schäfer G, Erb HH, Oh SJ, Culig Z, et al. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol. 2012;181:2188–201.CrossRefPubMedGoogle Scholar
  14. 14.
    Emadi BM, Soheili ZS, Schmitz I, Sameie S, Schulz WA. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol. 2010;26(6):553–67.CrossRefGoogle Scholar
  15. 15.
    Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber JE, Welén K. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer. 2010;17(2):469–79.CrossRefPubMedGoogle Scholar
  16. 16.
    Sánchez C, Mendoza P, Contreras HR, Vergara J, Castellón EA, et al. Expression of multidrug resistance proteins in prostate cancer is related with cell sensitivity to chemotherapeutic drugs. Prostate. 2009;69:1448–59.CrossRefPubMedGoogle Scholar
  17. 17.
    Chi KN, Siu LL, Hirte H, Hotte SJ, Knox J, Eisenhauer E, et al. A phase I study of OGX-011, a 2′-methoxyethyl phosphorothioate antisense to clusterin, in combination with docetaxel in patients with advanced cancer. Clin Cancer Res. 2008;14(3):833–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Tolcher AW, Chi K, Kuhn J, Gleave M, Patnaik A, Rowinsky E, et al. A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res. 2002;11(10):3854–61.CrossRefGoogle Scholar
  19. 19.
    Patterson SG, Wei S, Chen X, Sallman DA, Gilvary DL, Djeu JY, et al. Novel role of Stat1 in the development of docetaxel resistance in prostate tumor cells. Oncogene. 2006;25(45):6113–22.CrossRefPubMedGoogle Scholar
  20. 20.
    Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Mellado B, et al. Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res. 2006;12(18):5578–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Los M, et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007;10(1–2):13–29.CrossRefPubMedGoogle Scholar
  22. 22.
    Dorsey K, Agulnik M. Promising new molecular targeted therapies in head and neck cancer. Drugs. 2013;73:315–25.CrossRefPubMedGoogle Scholar
  23. 23.
    Li YS, Deng ZH, Zeng C, Lei GH. Role of osteopontin in osteosarcoma. Med Oncol. 2015;32(1):49.Google Scholar
  24. 24.
    Nakamura T, Shinriki S, Jono H, Ueda M, Nagata M, Ando Y, et al. Osteopontin-integrin αvβ3 axis is crucial for 5-fluorouracil resistance in oral squamous cell carcinoma. FEBS Lett. 2015;589(2):231–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Hsu KH, Tsai HW, Lin PW, Hsu YS, Lu PJ, Shan YS. Anti-apoptotic effects of osteopontin through the up-regulation of Mcl-1 in gastrointestinal stromal tumors. World J Surg Oncol. 2014;12:189.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Graessmann M, Berg B, Fuchs B, Klein A, Graessmann A. Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3. Oncogene. 2007;6(20):2840–50.CrossRefGoogle Scholar
  27. 27.
    Hsieh IS, Huang WH, Liou HC, Chuang WJ, Yang RS, Fu WM. Upregulation of drug transporter expression by osteopontin in prostate cancer cells. Mol Pharmacol. 2013;83(5):968–77.CrossRefPubMedGoogle Scholar
  28. 28.
    Magadoux L, Isambert N, Plenchette S, Jeannin JF, Laurens V. Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer (review). Int J Oncol. 2014;45(3):919–28.PubMedGoogle Scholar
  29. 29.
    Sartor O, Michels RM, Massard C, de Bono JS. Novel therapeutic strategies for metastatic prostate cancer in the post-docetaxel setting. Oncologist. 2001;16(11):487–97.Google Scholar
  30. 30.
    Ganju A, Yallapu MM, Khan S, Behrman SW, Chauhan SC, Jaggi M. Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resist Updat. 2014;17(1–2):13–23.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chang L, Graham PH, Hao J, Ni J, Bucci J, Li Y, et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013;24(4):e875.CrossRefGoogle Scholar
  32. 32.
    Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Choi W, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69:5820–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Leibowitz-Amit R, Joshua AM. The changing landscape in metastatic castration-resistant prostate cancer. Curr Opin Support Palliat Care. 2013;7:243–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Wissing MD, Van Diest PJ, Van der Wall E, Gelderblom H. Antimitotic agents for the treatment of patients with metastatic castrate-resistant prostate cancer. Expert Opin Investig Drugs. 2013;22:635–61.CrossRefPubMedGoogle Scholar
  35. 35.
    Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33(46):311–8.CrossRefGoogle Scholar
  36. 36.
    Marín-Aguilera M, Codony-Servat J, Reig O, Lozano JJ, Fernández PL, Mellado B. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther. 2014;13:1270–84.CrossRefPubMedGoogle Scholar
  37. 37.
    Guo YL, Chakraborty S, Rajan SS, Wang R, Huang F. Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev. 2010;19:1321–31.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ewald JA, Desotelle GW, Wilding G, Jarrard DF. Therapy-induced senescence in cancer. J Natl Cancer Inst. 2010;102:1536–46.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Boidot R, Vegran F, Lizard-Nacol S. Predictive value of surviving alternative transcript expression in locally advanced breast cancer patients treated with neoadjuvant chemotherapy. Int J Mol Med. 2009;23:285–91.PubMedGoogle Scholar
  40. 40.
    Thadani-Mulero M, Portella L, Sun S, Sung M, Matov A, Giannakakou P, et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res. 2014;74:2270–82.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Couter D, Cao H, Kwok S, Kong C, Banh A, Le QT, et al. The RGD domain of human osteopontin promotes tumor growth and metastasis through activation of survival pathways. PLoS ONE. 2010;5(3):e9633.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • K. D. M. Nakamura
    • 1
  • T. M. Tilli
    • 2
  • J. L. Wanderley
    • 3
  • A. PalumboJr.
    • 1
  • R. M. Mattos
    • 1
  • A. C. Ferreira
    • 4
  • C. E. Klumb
    • 4
  • L. E. Nasciutti
    • 1
  • E. R. Gimba
    • 2
    • 5
  1. 1.Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Programa de Pós Graduação Stricto Sensu em OncologiaCoordenação Geral Técnico Científica do Instituto Nacional de Câncer (INCa)Rio de JaneiroBrazil
  3. 3.Faculdade de MedicinaUniversidade Federal do Rio de JaneiroMacaéBrazil
  4. 4.Laboratório de Hemato-Oncologia Celular e Molecular. Programa de Pesquisa em Hemato-Oncologia Molecular—CGTCInstituto Nacional de CâncerRio de JaneiroBrazil
  5. 5.Departamento de Ciências da Natureza (RCN), Instituto de Humanidades e Sáude IHSUniversidade Federal FluminenseRio de JaneiroBrazil

Personalised recommendations