Tumor Biology

, Volume 37, Issue 3, pp 4093–4103 | Cite as

Expression of CDC5L is associated with tumor progression in gliomas

  • Wenjuan Chen
  • Li Zhang
  • Yan Wang
  • Jie Sun
  • Donglin Wang
  • Shaochen Fan
  • Na Ban
  • Junya Zhu
  • Bin Ji
  • Yuchan Wang
Original Article


Cell division cycle 5-like (CDC5L) protein is a cell cycle regulator of the G2/M transition and has been reported to participate in the catalytic step of pre-messenger RNA (mRNA) splicing and DNA damage repair. Recently, it was also found to act as a candidate oncogene in osteosarcoma and cervical tumors. However, the role of CDC5L expression in tumor biology was still unclear. Here, we analyzed the expression and clinical significance of CDC5L in gliomas. The expression of CDC5L in fresh glioma tissues and paraffin-embedded slices was evaluated by western blot and immunohistochemistry, respectively. We found that CDC5L was highly expressed in glioma tissues. The expression of CDC5L was significantly associated with glioma pathology grade and Ki-67 expression. Univariate and multivariate analyses showed that high CDC5L expression was an independent prognostic factor for glioma patients’ survival. To determine whether CDC5L could regulate the proliferation of glioma cells, we transfected glioma cells with interfering RNA target CDC5L, then investigated cell proliferation with cell counting kit (CCK)-8, flow cytometry assays and colony formation analyses. Our results indicated that knockdown of CDC5L would inhibit proliferation of glioma cells. Besides, reduced expression of CDC5L could induce the apoptosis of glioma cells. These findings suggested that CDC5L might play an important role in glioma and thus be a promising therapeutic target of glioma.


CDC5L Glioma Proliferation Apoptosis Prognosis 



This work was supported by the National Natural Science Foundation of China (81272789, 81201858) and the Natural Science Foundation of Jiangsu province Grant (BK2012231).

Conflicts of interest



  1. 1.
    Bauer R, Kaiser M, Stoll E. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population. PLoS One. 2014;9(11):e111219. doi: 10.1371/journal.pone.0111219.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Khasraw M, Ameratunga MS, Grant R, Wheeler H, Pavlakis N. Antiangiogenic therapy for high-grade glioma. Cochrane Database Syst Rev. 2014;9:CD008218. doi: 10.1002/14651858.CD008218.pub3.Google Scholar
  3. 3.
    Wang X, Zhao HY, Zhang FC, Sun Y, Xiong ZY, Jiang XB. Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Investig. 2014;32(9):451–7. doi: 10.3109/07357907.2014.958234.CrossRefGoogle Scholar
  4. 4.
    Omar AI. Tumor treating field therapy in combination with bevacizumab for the treatment of recurrent glioblastoma. J Vis Exp. 2014;92:e51638. doi: 10.3791/51638.Google Scholar
  5. 5.
    Mrugala MM. Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Discov Med. 2013;15(83):221–30.PubMedGoogle Scholar
  6. 6.
    Sherr CJ. Cancer cell cycles. Science. 1996;274(5293):1672–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Turowski P, Franckhauser C, Morris MC, Vaglio P, Fernandez A, Lamb NJ. Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Mol Biol Cell. 2003;14(7):2984–98. doi: 10.1091/mbc.E02-08-0515.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bernstein HS, Coughlin SR. Pombe Cdc5-related protein. A putative human transcription factor implicated in mitogen-activated signaling. J Biol Chem. 1997;272(9):5833–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 1998;20(1):46–50. doi: 10.1038/1700.CrossRefPubMedGoogle Scholar
  10. 10.
    Ohi R, Feoktistova A, McCann S, Valentine V, Look AT, Lipsick JS, et al. Myb-related Schizosaccharomyces pombe cdc5p is structurally and functionally conserved in eukaryotes. Mol Cell Biol. 1998;18(7):4097–108.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ajuh P, Kuster B, Panov K, Zomerdijk JC, Mann M, Lamond AI. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J. 2000;19(23):6569–81. doi: 10.1093/emboj/19.23.6569.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ajuh P, Lamond AI. Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domains of CDC5L and PLRG1. Nucleic Acids Res. 2003;31(21):6104–16.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ajuh P, Sleeman J, Chusainow J, Lamond AI. A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J Biol Chem. 2001;276(45):42370–81. doi: 10.1074/jbc.M105453200.CrossRefPubMedGoogle Scholar
  14. 14.
    Burns CG, Ohi R, Krainer AR, Gould KL. Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999;96(24):13789–94.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Grote M, Wolf E, Will CL, Lemm I, Agafonov DE, Schomburg A, et al. Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol. 2010;30(9):2105–19. doi: 10.1128/MCB.01505-09.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bernstein HS, Coughlin SR. A mammalian homolog of fission yeast Cdc5 regulates G2 progression and mitotic entry. J Biol Chem. 1998;273(8):4666–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Nasmyth K, Nurse P. Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1981;182(1):119–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Ohi R, McCollum D, Hirani B, Den Haese GJ, Zhang X, Burke JD, et al. The Schizosaccharomyces pombe cdc5+ gene encodes an essential protein with homology to c-Myb. EMBO J. 1994;13(2):471–83.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Mu R, Wang YB, Wu M, Yang Y, Song W, Li T, et al. Depletion of pre-mRNA splicing factor Cdc5L inhibits mitotic progression and triggers mitotic catastrophe. Cell Death Dis. 2014;5:e1151. doi: 10.1038/cddis.2014.117.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lu XY, Lu Y, Zhao YJ, Jaeweon K, Kang J, Xiao-Nan L, et al. Cell cycle regulator gene CDC5L, a potential target for 6p12-p21 amplicon in osteosarcoma. Mol Cancer Res. 2008;6(6):937–46. doi: 10.1158/1541-7786.MCR-07-2115.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15 Suppl 2:ii1–56. doi: 10.1093/neuonc/not151.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Auffinger B, Thaci B, Nigam P, Rincon E, Cheng Y, Lesniak MS. New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 Med Rep. 2012;4:18. doi: 10.3410/M4-18.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, et al. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia. 2015;17(3):239–55. doi: 10.1016/j.neo.2015.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Uchida F, Uzawa K, Kasamatsu A, Takatori H, Sakamoto Y, Ogawara K, et al. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest. BMC Cancer. 2012;12:321. doi: 10.1186/1471-2407-12-321.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kleihues P, Sobin LH. World Health Organization classification of tumors. Cancer. 2000;88(12):2887.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang N, Kaur R, Akhter S, Legerski RJ. Cdc5L interacts with ATR and is required for the S-phase cell-cycle checkpoint. EMBO Rep. 2009;10(9):1029–35. doi: 10.1038/embor.2009.122.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Martin JW, Chilton-MacNeill S, Koti M, van Wijnen AJ, Squire JA, Zielenska M. Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, and CDK4 as potential predictive biomarkers for neo-adjuvant chemotherapy response in paediatric osteosarcoma. PLoS One. 2014;9(5):e95843. doi: 10.1371/journal.pone.0095843.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu H, Schmitz JC, Wei J, Cao S, Beumer JH, Strychor S, et al. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncol Res. 2014;21(5):247–59. doi: 10.3727/096504014X13946388748910.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu MY, Kim YS. Antitumor activity of glycyrol via induction of cell cycle arrest, apoptosis and defective autophagy. Food Chem Toxicol. 2014;74:311–9. doi: 10.1016/j.fct.2014.10.023.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Wenjuan Chen
    • 1
    • 3
  • Li Zhang
    • 3
  • Yan Wang
    • 1
  • Jie Sun
    • 1
  • Donglin Wang
    • 3
  • Shaochen Fan
    • 1
  • Na Ban
    • 3
  • Junya Zhu
    • 1
  • Bin Ji
    • 1
  • Yuchan Wang
    • 2
    • 3
  1. 1.Department of Radiation Oncology and Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
  2. 2.Department of Pathogen, Medical CollegeNantong UniversityNantongChina
  3. 3.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetNantong UniversityNantongChina

Personalised recommendations