Tumor Biology

, Volume 37, Issue 2, pp 2509–2518 | Cite as

Quantum dot-based in situ simultaneous molecular imaging and quantitative analysis of EGFR and collagen IV and identification of their prognostic value in triple-negative breast cancer

  • Hong-Mei Zheng
  • Chuang Chen
  • Xin-Hong Wu
  • Jian Chen
  • Si Sun
  • Jin-Zhong Sun
  • Ming-Wei Wang
  • Sheng-Rong Sun
Original Article

Abstract

Triple-negative breast cancer (TNBC) is a unique breast cancer subtype with high heterogeneity and poor prognosis. Currently, the treatment effect of TNBC has reached a bottleneck, rendering new breakthroughs difficult. Cancer invasion is not an entirely cell-autonomous process, requiring the cells to transmigrate across the surrounding extracellular matrix (ECM) barriers. Developing a new system that integrates key constituents in the tumor microenvironment with pivotal cancer cell molecules is essential for the in-depth investigation of the mechanism of invasion in TNBC. We describe a computer-aided algorithm developed using quantum dot (QD)-based multiplex molecular imaging of TNBC tissues. We performed in situ simultaneous imaging and quantitative detection of epidermal growth factor receptor (EGFR), expressed in the TNBC cell membrane, and collagen IV, the major ECM constituent; calculated the EGFR/collagen IV ratio; and investigated the prognostic value of the EGFR/collagen IV ratio in TNBC. We simultaneously imaged and quantitatively detected EGFR and collagen IV in the TNBC samples. In all patients, quantitative determination showed a statistically significant negative correlation between EGFR and collagen IV. The 5-year disease-free survival (5-DFS) of the high and low EGFR/collagen IV ratio subgroups was significantly different. The EGFR/collagen IV ratio was predictive and was an independent prognostic indicator in TNBC. Compared with EGFR expression, the EGFR/collagen IV ratio had a greater prognostic value for 5-DFS. Our findings open up a new avenue for predicting the clinical outcome in TNBC from the perspective of integrating molecules expressed in both cancer cells and the ECM.

Keywords

Quantum dot Triple-negative breast cancer Epidermal growth factor receptor Collagen IV Prognosis 

Notes

Acknowledgments

This work was supported by the grants from the National Science Foundation of China [grant numbers 81201196, 81471781, 81302314, and 81230031], the National Key Scientific Instrument and Equipment Development Project [grant number 20133655893], the Key Scientific Research Project of Hubei Provincial Department of Education [grant number D20126102], the Natural Science Foundation of Hubei Province, China [grant numbers 301130851 and 2011CBD489], the Research Foundation of Public Health Bureau of Hubei Province [grant numbers JS-2011018, JX4B19, and JX3A14], the Key Project of Health and the Family Planning Commission of Hubei Province [grant number WJ2015MA016].

Conflicts of interest

None

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.PubMedGoogle Scholar
  3. 3.
    De Laurentiis M, Cianniello D, Caputo R, Stanzione B, Arpino G, Cinieri S, et al. Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat Rev. 2010;36 Suppl 3:S80–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16 Suppl 1:61–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Abramson VG, Lehmann BD, Ballinger TJ, Pietenpol JA. Subtyping of triple-negative breast cancer: implications for therapy. Cancer. 2015;121(1):8–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Montagna E, Maisonneuve P, Rotmensz N, Cancello G, Iorfida M, Balduzzi A, et al. Heterogeneity of triple-negative breast cancer: histologic subtyping to inform the outcome. Clin Breast Cancer. 2013;13(1):31–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rohan TE, Xue X, Lin HM, D’Alfonso TM, Ginter PS, Oktay MH, et al. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J Natl Cancer Inst. 2014. doi: 10.1093/jnci/dju136.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen C, Peng J, Sun SR, Peng CW, Li Y, Pang DW. Tapping the potential of quantum dots for personalized oncology: current status and future perspectives. Nanomedicine (Lond). 2012;7(3):411–28.CrossRefGoogle Scholar
  10. 10.
    Zeng WJ, Peng CW, Yuan JP, Cui R, Li Y. Quantum dot-based multiplexed imaging in malignant ascites: a new model for malignant ascites classification. Int J Nanomedicine. 2015;10:1759–68.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang LW, Peng CW, Chen C, Li Y. Quantum dots-based tissue and in vivo imaging in breast cancer researches: current status and future perspectives. Breast Cancer Res Treat. 2015;151(1):7–17.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yuan JP, Wang LW, Qu AP, Chen JM, Xiang QM, Chen C, et al. Quantum dots-based quantitative and in situ multiple imaging on ki67 and cytokeratin to improve ki67 assessment in breast cancer. PLos ONE. 2015. doi: 10.1371/journal.pone.0122734.Google Scholar
  13. 13.
    Sun JZ, Chen C, Jiang G, Tian WQ, Li Y, Sun SR. Quantum dot-based immunofluorescent imaging of Ki67 and identification of prognostic value in HER2-positive (non-luminal) breast cancer. Int J Nanomedicine. 2014;9:1339–46.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD, et al. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials. 2009;30(15):2912–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen C, Sun SR, Gong YP, Qi CB, Peng CW, Yang XQ, et al. Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. Biomaterials. 2011;32(30):7592–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen C, Peng J, Xia H, Wu Q, Zeng L, Xu H, et al. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology. 2010;21(9):095–101.Google Scholar
  17. 17.
    Chen C, Xia HS, Gong YP, Peng J, Peng CW, Hu MB, et al. The quantitative detection of total HER2 load by quantum dots and the identification of a new subtype of breast cancer with different 5-year prognosis. Biomaterials. 2010;31(33):8818–25.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang XQ, Chen C, Peng CW, Hou JX, Liu SP, Qi CB, et al. Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays. Int J Nanomedicine. 2011;6:2265–73.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Peng CW, Tian Q, Yang GF, Fang M, Zhang ZL, Peng J, et al. Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials. 2012;33(23):5742–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Fang M, Yuan JP, Peng CW, Pang DW, Li Y. Quantum dots-based in situ molecular imaging of dynamic changes of collagen IV during cancer invasion. Biomaterials. 2013;34(34):8708–17.CrossRefPubMedGoogle Scholar
  21. 21.
    Peng CW, Liu XL, Chen C, Liu X, Yang XQ, Pang DW, et al. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials. 2011;32(11):2907–17.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu XL, Peng CW, Chen C, Yang XQ, Hu MB, Xia HS, et al. Quantum dots-based double-color imaging of HER2 positive breast cancer invasion. Biochem Biophys Res Commun. 2011;409(3):577–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Hu WQ, Fang M, Zhao HL, Yan SG, Yuan JP, Peng CW, et al. Tumor invasion unit in gastric cancer revealed by QDs-based in situ molecular imaging and multispectral analysis. Biomaterials. 2014;35(13):4125–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol. 2009;185(1):11–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Corkery B, Crown J, Clynes M, O’Donovan N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol. 2009;20(5):862–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, et al. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol. 2012;30(21):2615–23.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rowe RG, Weiss SJ. Breaching the basement membrane: who, when and how. Trends Cell Biol. 2008;18(11):560–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou L, Li K, Luo Y, Tian L, Wang M, Li C, et al. Novel prognostic markers for patients with triple-negative breast cancer. Hum Pathol. 2013;44(10):2180–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Moorman AM, Vink R, Heijmans HJ, van der Palen J, Kouwenhoven EA. The prognostic value of tumour-stroma ratio in triple-negative breast cancer. Eur J Surg Oncol. 2012;38(4):307–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Reyes-Uribe E, Galindo-Hernandez O, Cortes-Reynosa P, Salazar EP. Cell migration induced by native type IV collagen requires PI3K/Akt2 and EGFR activity in MDA-MB-231 breast cancer cells. Cancer Research Journal. 2015;3(3):52–62.CrossRefGoogle Scholar
  34. 34.
    Zhang M, Zhang X, Zhao S, Wang Y, Di W, Zhao G, et al. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients. Target Oncol. 2014;9(4):349–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, MacBeath G, et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell. 2012;149(4):780–94.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shapira I, Lee A, Vora R, Budman DR. P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency. Crit Rev Oncol Hematol. 2013;88(2):284–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    McNamara KM, Yoda T, Takagi K, Miki Y, Suzuki T, Sasano H. Androgen receptor in triple negative breast cancer. J Steroid Biochem Mol Biol. 2013;133:66–76.CrossRefPubMedGoogle Scholar
  40. 40.
    Mrklic I, Capkun V, Pogorelic Z, Tomic S. Prognostic value of Ki-67 proliferating index in triple negative breast carcinomas. Pathol Res Pract. 2013;209(5):296–301.CrossRefPubMedGoogle Scholar
  41. 41.
    Mrklic I, Spagnoli GC, Juretic A, Pogorelic Z, Tomic S. Co-expression of cancer testis antigens and topoisomerase 2-alpha in triple negative breast carcinomas. Acta Histochem. 2014;116(5):740–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Liedtke C, Rody A. New treatment strategies for patients with triple-negative breast cancer. Curr Opin Obstet Gynecol. 2015;27(1):77–84.CrossRefPubMedGoogle Scholar
  43. 43.
    Elsawaf Z, Sinn HP, Rom J, Bermejo JL, Schneeweiss A, Aulmann S. Biological subtypes of triple-negative breast cancer are associated with distinct morphological changes and clinical behaviour. Breast. 2013;22(5):986–92.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Hong-Mei Zheng
    • 1
  • Chuang Chen
    • 1
  • Xin-Hong Wu
    • 2
  • Jian Chen
    • 3
  • Si Sun
    • 4
  • Jin-Zhong Sun
    • 1
  • Ming-Wei Wang
    • 5
  • Sheng-Rong Sun
    • 1
  1. 1.Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  2. 2.Department of Breast SurgeryHubei Cancer HospitalWuhanPeople’s Republic of China
  3. 3.Department of Head and Neck SurgeryHubei Cancer HospitalWuhanPeople’s Republic of China
  4. 4.Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  5. 5.Department of PathologyHubei Cancer HospitalWuhanPeople’s Republic of China

Personalised recommendations