Tumor Biology

, Volume 37, Issue 2, pp 2497–2507 | Cite as

miR-383 inhibits hepatocellular carcinoma cell proliferation via targeting APRIL

  • Lin Chen
  • Haitao Guan
  • Chunyan Gu
  • Yali Cao
  • Jianguo Shao
  • Feng Wang
Original Article


Mounting evidence has shown that microRNAs (miRNAs), a class of small non-coding RNAs, are frequently deregulated in human malignancies and have pivotal roles in diverse biological processes including cancer cell proliferation. Herein, we investigated the expression pattern of miR-383 in 64 hepatocellular carcinoma (HCC) tissues and 4 HCC cell lines and found that miR-383 was downregulated in HCC tissues and cell lines. Moreover, miR-383 expression in HCC was significantly correlated with tumor size and tumor–node–metastasis (TNM) stage. Kaplan–Meier analysis showed that decreased miR-383 expression was associated with poor overall survival of HCC patients. In addition, Cox regression analysis indicated that miR-383 was an independent prognostic factor for HCC patients. Then, functional studies demonstrated that ectopic miR-383 expression could significantly suppress the in vitro proliferation of HCC cells, as well as induce cell cycle arrest and cell apoptosis. Luciferase reporter assay further identified that a proliferation-inducing ligand (APRIL), a member in the tumor necrosis factor (TNF) superfamily, was a novel target gene for miR-383. Subsequent investigation revealed that miR-383 expression was inversely correlated with APRIL messenger RNA (mRNA) expression in HCC tissues. Besides, recombinant human APRIL (rhAPRIL) could rescue HCC cell proliferation inhibited by miR-383. Taken together, our present study provided the first evidence that miR-383 was decreased in HCC and associated with tumor progression and prognosis of HCC patients. Furthermore, our findings confirmed that miR-383 might inhibit HCC cell proliferation partially via downregulating APRIL expression. Thus, this study might provide a promising strategy by targeting with the miR-383-APRIL axis in the treatment of HCC.


Hepatocellular carcinoma miR-383 APRIL Cell proliferation Cell cycle Apoptosis 



This study was supported by National Natural Science Youth Foundation of China (No. 81201351), the project of Jiangsu Provincial Commission of Health and Family Planning (No.H201453), and the Science and Technology Development Project of Nantong City, China (No. HS2014061, BK2014073, HS2013054, HS2011058).

Conflicts of interest

The authors declare no conflicts of interest.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Tabrizian P, Roayaie S, Schwartz ME. Current management of hepatocellular carcinoma. World J Gastroenterol. 2014;20(30):10223–37.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mikhail S, Cosgrove D, Zeidan A. Hepatocellular carcinoma: systemic therapies and future perspectives. Expert Rev Anticancer Ther. 2014;14(10):1205–18.CrossRefPubMedGoogle Scholar
  4. 4.
    Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63(5):844–55.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Raza A, Sood GK. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol. 2014;20(15):4115–27.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wahid F, Khan T, Kim YY. MicroRNA and diseases: therapeutic potential as new generation of drugs. Biochimie. 2014;104:12–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol. 2013;774:1–20.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li X, Yang W, Lou L, Chen Y, Wu S, Ding G. microRNA: a promising diagnostic biomarker and therapeutic target for hepatocellular carcinoma. Dig Dis Sci. 2014;59(6):1099–107.CrossRefPubMedGoogle Scholar
  9. 9.
    Callegari E, Elamin BK, Sabbioni S, Gramantieri L, Negrini M. Role of microRNAs in hepatocellular carcinoma: a clinical perspective. Onco Targets Ther. 2013;6:1167–78.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Li KK, Pang JC, Lau KM, Zhou L, Mao Y, Wang Y, et al. MiR-383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathol. 2013;23(4):413–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Lian J, Tian H, Liu L, Zhang XS, Li WQ, Deng YM, et al. Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death Dis. 2010;1:e94.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    He Z, Cen D, Luo X, Li D, Li P, Liang L, et al. Downregulation of miR-383 promotes glioma cell invasion by targeting insulin-like growth factor 1 receptor. Med Oncol. 2013;30(2):557.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang F, Chen L, Ni H, Wang G, Ding W, Cong H, et al. APRIL depletion induces cell cycle arrest and apoptosis through blocking TGF-β1/ERK signaling pathway in human colorectal cancer cells. Mol Cell Biochem. 2013;383(1–2):179–89.CrossRefPubMedGoogle Scholar
  14. 14.
    Garcia-Castro A, Zonca M, Florindo-Pinheiro D, Carvalho-Pinto CE, Cordero A, Gutierrez Del Burgo B, et al. APRIL promotes breast tumor growth and metastasis and is associated with aggressive basal breast cancer. Carcinogenesis. 2015;36(5):574–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Mhawech-Fauceglia P, Allal A, Odunsi K, Andrews C, Herrmann FR, Huard B. Role of the tumour necrosis family ligand APRIL in solid tumour development: retrospective studies in bladder, ovarian and head and neck carcinomas. Eur J Cancer. 2008;44(15):2097–100.CrossRefPubMedGoogle Scholar
  16. 16.
    Planelles L, Medema JP, Hahne M, Hardenberg G. The expanding role of APRIL in cancer and immunity. Curr Mol Med. 2008;8(8):829–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Rasool M, Rashid S, Arooj M, Ansari SA, Khan KM, Malik A, et al. New possibilities in hepatocellular carcinoma treatment. Anticancer Res. 2014;34(4):1563–71.PubMedGoogle Scholar
  18. 18.
    Boye A, Yang Y. Hepatic MicroRNA orchestra: a new diagnostic, prognostic and theranostic tool for hepatocarcinogenesis. Mini Rev Med Chem. 2014;14(10):837–52.PubMedGoogle Scholar
  19. 19.
    D’Anzeo M, Faloppi L, Scartozzi M, Giampieri R, Bianconi M, Del Prete M, et al. The role of micro-RNAs in hepatocellular carcinoma: from molecular biology to treatment. Molecules. 2014;19(5):6393–406.CrossRefPubMedGoogle Scholar
  20. 20.
    Tan YL, Chen WN. MicroRNAs as therapeutic strategy for hepatitis B virus- associated hepatocellular carcinoma: current status and future prospects. World J Gastroenterol. 2014;20(20):5973–86.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hung CH, Chiu YC, Chen CH, Hu TH. MicroRNAs in hepatocellular carcinoma: carcinogenesis, progression, and therapeutic target. Biomed Res Int. 2014;2014:486407.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Su ZX, Zhao J, Rong ZH, Geng WM, Wu YG, Qin CK. Upregulation of microRNA-25 associates with prognosis in hepatocellular carcinoma. Diagn Pathol. 2014;9:47.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang WY, Zhang HF, Wang L, Ma YP, Gao F, Zhang SJ, et al. High expression of microRNA-130b correlates with poor prognosis of patients with hepatocellular carcinoma. Diagn Pathol. 2014;9:160.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang Z, Zheng W, Hai J. MicroRNA-148b expression is decreased in hepatocellular carcinoma and associated with prognosis. Med Oncol. 2014;31(6):984.CrossRefPubMedGoogle Scholar
  25. 25.
    Chen P, Zhao X, Ma L. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem. 2013;383(1–2):49–58.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang F, Chen L, Ding W, Wang G, Wu Y, Wang J, et al. Serum APRIL, a potential tumor marker in pancreatic cancer. Clin Chem Lab Med. 2011;49(10):1715–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhi X, Tao J, Xiang G, Cao H, Liu Z, Yang K, et al. APRIL induces cisplatin resistance in gastric cancer cells via activation of the NF-κB pathway. Cell Physiol Biochem. 2015;35(2):571–85.CrossRefPubMedGoogle Scholar
  28. 28.
    Hahne M, Kataoka T, Schroter M, Hofmann K, Irmler M, Bodmer JL, et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med. 1998;188(6):1185–90.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang F, Ding W, Wang J, Jing R, Wang X, Cong H, et al. Identification of microRNA-target interaction in APRIL-knockdown colorectal cancer cells. Cancer Gene Ther. 2011;18(7):500–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Moreaux J, Veyrune JL, De Vos J, Klein B. APRIL is overexpressed in cancer: link with tumor progression. BMC Cancer. 2009;9:83.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang G, Wang F, Ding W, Wang J, Jing R, Li H, et al. APRIL induces tumorigenesis and metastasis of colorectal cancer cells via activation of the PI3K/Akt pathway. PLoS One. 2013;8(1):e55298.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Lin Chen
    • 1
  • Haitao Guan
    • 1
  • Chunyan Gu
    • 1
  • Yali Cao
    • 1
  • Jianguo Shao
    • 1
  • Feng Wang
    • 2
  1. 1.Department of Gastroenterology and Clinical LaboratoryThe Third People’s Hospital of Nantong CityJiangsuChina
  2. 2.Department of Clinical Laboratory CenterAffiliated Hospital of Nantong UniversityJiangsuChina

Personalised recommendations