Tumor Biology

, Volume 37, Issue 2, pp 2313–2320 | Cite as

Regulation of β-catenin transcription activity by leupaxin in hepatocellular carcinoma

  • Jia Shi
  • Wen-Jie Wu
  • Gang Hu
  • Xin Yu
  • Ge-Shu Yu
  • Han Lu
  • Ming-Liang Yang
  • Bin Liu
  • Zhi-Xiang Wu
Original Article


In human cancers, β-catenin is accumulated in the nucleus and activates mRNA transcription of many oncogenic genes, such as cyclin D1 and c-myc. However, the mechanism of β-catenin-mediated transcriptional activation remains largely unknown. In the present study, we identified leupaxin, an adaptor protein sharing homology with the focal adhesion protein, as a novel coactivator for β-catenin in human hepatocellular carcinoma (HCC). We show that leupaxin could interact with β-catenin and enhance its transcriptional activity through recruitment of coactivator complex, including steroid receptor coactivator 1 (SRC-1) and P300. As a result, leupaxin regulates HCC cell proliferation and cell-cycle progression in the presence of intact Wnt/β-catenin signaling. Furthermore, leupaxin is overexpressed in HCC tissues and correlated with mRNA levels of cyclin D1 and c-myc. Therefore, this is the first demonstration of a role for the leupaxin in the regulation of HCC progression, at least in part, by enhancing β-catenin transcription activity.


Hepatocellular carcinoma (HCC) Leupaxin β-catenin Coactivator Transcription activity 



This work was supported by the National Natural Science Foundation, People’s Republic of China, grant no. 31401185 (to Dr. Bin Liu) and no. 81402478 (to Dr. Zhi-Xiang Wu).

Conflicts of interest


Supplementary material

13277_2015_4060_Fig7_ESM.gif (2 kb)
Supplementary Figure 1

Overexpression of Leupaxin promotes cell proliferation in Hep3B cells. (A) Representative protein levels of Leupaxin in Hep3B cells transfected with adenoviruses containing Leupaxin (100 MOI) or empty vector (EV) for 36 hr. (B-C) Cell viability assays (B) and proliferation assays (C) in Hep3B cells transfected with adenoviruses containing Leupaxin (100 MOI) or empty vector (EV). (D) Relative mRNA levels of Cyclin D1 and c-myc in Hep3B cells overexpressing Leupaxin or empty vector (EV). (GIF 1 kb)

13277_2015_4060_MOESM1_ESM.tif (428 kb)
High Resolution Image (TIFF 428 kb)
13277_2015_4060_Fig8_ESM.gif (2 kb)
Supplementary Figure 2

Knockdown of β-catenin blocked the roles of Leupaxin. (A) Representative protein levels of β-catenin in HuH7 cells transfected with small interfering RNA targeting β-catenin or negative control (NC) for 36 hr. (B-C) Cell viability assays (B) and proliferation assays (C) in HuH7 cells. Cells were transfected with small interfering RNA targeting β-catenin or negative control (NC) for 24 hr, and then transfected with Leupaxin or empty vector (EV) for another 24 hr. (D-E) Relative mRNA levels of Cyclin D1 (D) and c-myc (E) in HuH7 cells. (GIF 1 kb)

13277_2015_4060_MOESM2_ESM.tif (513 kb)
High Resolution Image (TIFF 512 kb)
13277_2015_4060_Fig9_ESM.gif (2 kb)
Supplementary Figure 3

Knockdown of Leupaxin inhibits cell proliferation. (A) Representative protein levels of Leupaxin in Hep3B cells transfected with small interfering RNA targeting Leupaxin or negative control (NC) for 36 hr. (B-C) Cell viability assays (B) and proliferation assays (C) in Hep3B cells transfected with small interfering RNA targeting Leupaxin or negative control (NC). (D) Relative mRNA levels of Cyclin D1 and c-myc in Hep3B cells. (GIF 1 kb)

13277_2015_4060_MOESM3_ESM.tif (467 kb)
High Resolution Image (TIFF 467 kb)
13277_2015_4060_Fig10_ESM.gif (7 kb)
Supplementary Figure 4

Subcellular distribution of β-catenin. HuH7 were transfected with adenoviruses containing Leupaxin (100 MOI) or empty vector (EV) for 36 hr. α-Tubulin and Histone H3 were used as loading controls for cytoplasmic and nuclear lysates, respectively. (GIF 7 kb)

13277_2015_4060_MOESM4_ESM.tif (940 kb)
High Resolution Image (TIFF 940 kb)


  1. 1.
    Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5(9):691–701.CrossRefPubMedGoogle Scholar
  2. 2.
    Kypta RM, Waxman J. Wnt/β-catenin signalling in prostate cancer. Nat Rev Urol. 2012;9(8):418–28.CrossRefPubMedGoogle Scholar
  3. 3.
    Monga SP. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology. 2015;148(7):1294–310.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1(1):55–67.CrossRefPubMedGoogle Scholar
  5. 5.
    Darnell Jr JE. Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002;2(10):740–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Brabletz T, Herrmann K, Jung A, Faller G, Kirchner T. Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am J Pathol. 2000;156(3):865–70.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Teo JL, Ma H, Nguyen C, Lam C, Kahn M. Specific inhibition of CBP/beta-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc Natl Acad Sci U S A. 2005;102(34):12171–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun Y, Kolligs FT, Hottiger MO, Mosavin R, Fearon ER, Nabel GJ. Regulation of beta-catenin transformation by the P300 transcriptional coactivator. Proc Natl Acad Sci U S A. 2000;97(23):12613–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alves-Guerra MC, Ronchini C, Capobianco AJ. Mastermind-like 1 is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res. 2007;67(18):8690–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Tong Z, Li M, Wang W, Mo P, Yu L, Liu K, et al. Steroid receptor coactivator 1 promotes human hepatocellular carcinoma progression by enhancing Wnt/beta-catenin signaling. J Biol Chem. 2015;290(30):18596–608.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gupta A, Lee BS, Khadeer MA, Tang Z, Chellaiah M, Abu-Amer Y, et al. Leupaxin is a critical adaptor protein in the adhesion zone of the osteoclast. J Bone Miner Res. 2003;18(4):669–85.CrossRefPubMedGoogle Scholar
  13. 13.
    Lipsky BP, Beals CR, Staunton DE. Leupaxin is a novel LIM domain protein that forms a complex with PYK2. J Biol Chem. 1998;273(19):11709–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaulfuss S, Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Neesen J, et al. Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells. Mol Endocrinol. 2008;22(7):1606–21.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaulfuss S, Herr AM, Büchner A, Hemmerlein B, Günthert AR, Burfeind P. Leupaxin is expressed in mammary carcinoma and acts as a transcriptional activator of the estrogen receptor α. Int J Oncol. 2015;47(1):106–14.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen RH, Ding WV, McCormick F. Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J Biol Chem. 2000;275(23):17894–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Griffin CT, Curtis CD, Davis RB, Muthukumar V, Magnuson T. The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels. Proc Natl Acad Sci U S A. 2011;108(6):2282–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gang EJ, Hsieh YT, Pham J, Zhao Y, Nguyen C, Huantes S, et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene. 2014;33(17):2169–78.CrossRefPubMedGoogle Scholar
  19. 19.
    Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, et al. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science. 1999;285(5435):1923–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Nakamura T, Hamada F, Ishidate T, Anai K, Kawahara K, Toyoshima K, et al. Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells. 1998;3(6):395–403.CrossRefPubMedGoogle Scholar
  21. 21.
    Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007;316(5827):1043–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Dierks S, von Hardenberg S, Schmidt T, Bremmer F, Burfeind P, Kaulfuß S. Leupaxin stimulates adhesion and migration of prostate cancer cells through modulation of the phosphorylation status of the actin-binding protein caldesmon. Oncotarget. 2015;6(15):13591–606.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Arend RC, Londoño-Joshi AI, Straughn Jr JM, Buchsbaum DJ. The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol Oncol. 2013;131(3):772–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J. 2012;31(12):2714–36.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jia Shi
    • 1
  • Wen-Jie Wu
    • 1
  • Gang Hu
    • 2
  • Xin Yu
    • 2
  • Ge-Shu Yu
    • 2
  • Han Lu
    • 3
  • Ming-Liang Yang
    • 4
  • Bin Liu
    • 2
  • Zhi-Xiang Wu
    • 1
  1. 1.Department of Pediatric SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of MedicineHubei Polytechnic UniversityHuangshiPeople’s Republic of China
  3. 3.Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of Medicine (SJTU-SM)ShanghaiPeople’s Republic of China
  4. 4.Department of AnesthesiologyJianli Second People’s HospitalJianliPeople’s Republic of China

Personalised recommendations