Skip to main content

Advertisement

Log in

SNHG3 correlates with malignant status and poor prognosis in hepatocellular carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

Long noncoding RNAs (lncRNAs) have been found dysregulated in human disease, especially in cancer. Small nucleolar RNA host gene 3 (SNHG3) is an lncRNA whose potential function and mechanism in hepatocellular carcinoma (HCC) remain largely unknown. In the present study, we aimed to determine SNHG3 expression and its clinical significance in HCC. Our results showed that the expression level of SNHG3 was significantly upregulated in HCC tissues compared with paired noncancerous tissues from 51 HCC patients, as determined by quantitative real-time polymerase chain reaction (qRT-PCR; P < 0.001), which was consistent with the results of two independent HCC cohorts from The Cancer Genome Atlas (TCGA) and Oncomine databases (P < 0.0001 and P = 0.0325, respectively). These results were further confirmed in 144 paired paraffin-embedded HCC specimens by in situ hybridization assay (ISH). Furthermore, SNHG3 expression was significantly correlated with tumor size (P = 0.003), portal vein tumor thrombus (PVTT; P = 0.014), and relapse (P = 0.038). The high expression level of SNHG3 was markedly correlated with overall survival (OS; P < 0.0001), recurrence-free survival (RFS; P = 0.006), and disease-free survival (DFS; P < 0.0001). More importantly, multivariate analysis indicated that SNHG3 expression was an independent prognostic factor for HCC patients (P < 0.001). In conclusion, increased SNHG3 expression is associated with malignant status and poor prognosis in HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res. 2014;74:716–7167.

    Article  Google Scholar 

  2. Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62:394–9.

    Article  PubMed  Google Scholar 

  3. He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Villanueva A, Minguez B, Forner A, Reig M, Llovet JM. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med. 2010;61:317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karreth FA, Pandolfi PP. CeRNA cross-talk in cancer: when ce-bling rivalries Go awry. Cancer Discov. 2013;3:1113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ulitsky I, Bartel DP. LincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154:26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.

    Article  CAS  PubMed  Google Scholar 

  9. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shabalina SA1, Spiridonov NA. The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biol [NLM - MEDLINE]. 2004;5:105.

    Article  Google Scholar 

  11. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol. 2014;24:651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown CJ et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349:38–44.

    Article  CAS  PubMed  Google Scholar 

  14. Rinn JL1, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by Non-coding RNAs. Cell. 2007;129:1311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The Nuclear-Retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y, et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep-UK. 2014; 4.

  18. Su S, Liu Q, Chen J, Chen J, Chen F, He C, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014;25:605–20.

    Article  PubMed  Google Scholar 

  19. Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A, et al. Genome-wide mapping and characterization of notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158:593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.

    Article  CAS  PubMed  Google Scholar 

  21. Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, et al. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-Catenin in HCC cells. Gastroenterology. 2015;148:415–26.

    Article  CAS  PubMed  Google Scholar 

  22. Huang JL, Zheng L, Hu YW, et al. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis. 2014;35:507–14.

    Article  CAS  PubMed  Google Scholar 

  23. Sun J, Bie B, Zhang S, et al. Long non-coding RNAs: critical players in hepatocellular carcinoma. Int J Mol Sci. 2014;15:20434–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, et al. LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 2014;159:1110–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun J, Bie B, Zhang S, Yang J, Li Z. Long non-coding RNAs: critical players in hepatocellular carcinoma. Int J Mol Sci. 2014;15:20434–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  PubMed  Google Scholar 

  27. He Y, Meng X, Huang C, Wu B, Zhang L, Lv X, et al. Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Cancer Lett. 2014;344:20–7.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu J, Liu S, Ye F, et al. The long noncoding RNA expression profile of hepatocellular carcinoma identified by microarray analysis. PLoS One. 2014;9:e101707.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42.

    Article  CAS  PubMed  Google Scholar 

  30. Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 2011;39(6):2119–28.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011;18(5):1243–50.

    Article  PubMed  Google Scholar 

  32. Pelczar P et al. The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol Cell Biol. 1998;18(8):4509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with ethical standards

Funding

This study was funded by National Nature Science Foundation of China (81401180 and 81372283).

Conflicts of interest

None

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dehua Wu or Li Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 55 kb)

Table S2

(DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Cao, C., Wu, D. et al. SNHG3 correlates with malignant status and poor prognosis in hepatocellular carcinoma. Tumor Biol. 37, 2379–2385 (2016). https://doi.org/10.1007/s13277-015-4052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4052-4

Keywords

Navigation