Advertisement

Tumor Biology

, Volume 37, Issue 2, pp 2341–2351 | Cite as

Peritoneal sarcomatosis: site of origin for the establishment of an in vitro and in vivo cell line model to study therapeutic resistance in dedifferentiated liposarcoma

  • Sabrina Mersch
  • Jasmin C. Riemer
  • Philipp M. Schlünder
  • Markus P. Ghadimi
  • Hany Ashmawy
  • Birte Möhlendick
  • Stefan A. Topp
  • Tanja Arent
  • Patric Kröpil
  • Nikolas H. Stoecklein
  • Helmut E. Gabbert
  • Wolfram T. Knoefel
  • Andreas Krieg
Original Article

Abstract

Approximately 50–70 % of patients with retroperitoneal or intraabdominal sarcoma develop a relapse after surgical therapy, including peritoneal sarcomatosis, an extremely rare site of metastatic disease which is associated with an extremely poor prognosis. Accordingly, the establishment of a permanent cell line derived from peritoneal sarcomatosis might provide a helpful tool to understand the biological behavior and to develop new therapeutic strategies. Thus, we established and characterized a liposarcoma cell line (Lipo-DUE1) from a peritoneal sarcomatosis that was permanently cultured without showing any morphological changes. Lipo-DUE1 cells exhibited a spindle-shaped morphology and positive staining for S100. Tumorigenicity was demonstrated in vitro by invasion and migration assays and in vivo by using a subcutaneous xenograft mouse model. In addition, aCGH analysis revealed concordant copy number variations on chromosome 12q in the primary tumor, peritoneal sarcomatosis, and Lipo-DUE1 cells that are commonly observed in liposarcoma. Chemotherapeutic sensitivity assays revealed a pronounced drug-resistant phenotype of Lipo-DUE1 cells to conventionally used chemotherapeutic agents. In conclusion, we describe for the first time the establishment and characterization of a liposarcoma cell line derived from a peritoneal sarcomatosis. Hence, in the future, the newly established cell line Lipo-DUE1 might serve as a useful in vitro and in vivo model to investigate the biological behavior of liposarcoma and to assess novel targeted therapies.

Keywords

Liposarcoma Peritoneal sarcomatosis WDLPS DDLPS Cell culture model 

Notes

Acknowledgments

We would like to thank Dr. Dina Lev (MD Anderson Cancer Center) for providing us cell lines Lipo246 and PLS-1. The study was supported in part by a grant from the Deutsche Forschungsgemeinschaft (KR 3496/2-1 to Andreas Krieg).

Compliance with ethical standards

Funding

This study was funded by the Deutsche Forschungsgemeinschaft (KR 3496/2-1).

Conflicts of interest

None

Statement of human rights

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement on the welfare of animals

Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

13277_2015_4050_MOESM1_ESM.ppt (528 kb)
Supplementary Fig. 1 Copy number gains of commonly altered oncogenes in DDLPS. A detailed view on region 12q14.1-15 displayed typical oncogenic alterations of DDLPS in the adipocytic (C1; red area) or leiomyomatous (C2; blue area) component of the primary tumor, peritoneal sarcomatosis (PS; green area) and Lipo-DUE1 cells (CL; grey area). (A) TSPAN-31, CDK4 and AVIL on 12q14.1, (B) HMGA2 on 12q14.3 and (C) MDM2 on 12q15. Evaluation was done by ADM-2 algorithm with a threshold of 6.0. (PPT 528 kb)
13277_2015_4050_MOESM2_ESM.ppt (151 kb)
Supplementary Fig. 2 Copy number gain of C-MYC. Detailed view of aCGH profiles identifying copy number alterations for C-MYC on 12q24.21 in the leiomyomatous (C2; blue area) component of the primary tumor, peritoneal sarcomatosis (PS; green area) and Lipo-DUE1 cells (CL; grey area). The adipocytic (C1) differentiated area of the primary LPS exhibited a normal C-MYC gene copy number (absence of a colored area in the aCGH profile). Evaluation was done by ADM-2 algorithm with a threshold of 6.0. (PPT 151 kb)

References

  1. 1.
    Mack TM. Sarcomas and other malignancies of soft tissue, retroperitoneum, peritoneum, pleura, heart, mediastinum, and spleen. Cancer. 1995;75(1 Suppl):211–44.CrossRefPubMedGoogle Scholar
  2. 2.
    Dei Tos AP. Liposarcoma: new entities and evolving concepts. Ann Diagn Pathol. 2000;4(4):252–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Crago AM, Singer S. Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr Opin Oncol. 2011;23(4):373–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F. WHO classifica tion of tumours of soft tissue and bone. 4th ed. WHO classifica tion of tumours of soft tissue and bone. Lyon: International Agency for Research on Cancer (IACR); 2013.Google Scholar
  5. 5.
    Singer S, Antonescu CR, Riedel E, Brennan MF. Histologic subtype and margin of resection predict pattern of recurrence and survival for retroperitoneal liposarcoma. Ann Surg. 2003;238(3):358–70. discussion 70-1.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Fabre-Guillevin E, Coindre JM, Somerhausen Nde S, Bonichon F, Stoeckle E, Bui NB. Retroperitoneal liposarcomas: follow-up analysis of dedifferentiation after clinicopathologic reexamination of 86 liposarcomas and malignant fibrous histiocytomas. Cancer. 2006;106(12):2725–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Stojadinovic A, Leung DH, Hoos A, Jaques DP, Lewis JJ, Brennan MF. Analysis of the prognostic significance of microscopic margins in 2,084 localized primary adult soft tissue sarcomas. Ann Surg. 2002;235(3):424–34.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stefanovski PD, Bidoli E, De Paoli A, Buonadonna A, Boz G, Libra M, et al. Prognostic factors in soft tissue sarcomas: a study of 395 patients. Eur J Surg Oncol. 2002;28(2):153–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Hoffman A, Lazar AJ, Pollock RE, Lev D. New frontiers in the treatment of liposarcoma, a therapeutically resistant malignant cohort. Drug Resist Updat. 2011;14(1):52–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Rosai J, Akerman M, Dal Cin P, DeWever I, Fletcher CD, Mandahl N, et al. Combined morphologic and karyotypic study of 59 atypical lipomatous tumors. Evaluation of their relationship and differential diagnosis with other adipose tissue tumors (a report of the CHAMP study group). Am J Surg Pathol. 1996;20(10):1182–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Pedeutour F, Suijkerbuijk RF, Forus A, Van Gaal J, Van de Klundert W, Coindre JM, et al. Complex composition and co-amplification of SAS and MDM2 in ring and giant rod marker chromosomes in well-differentiated liposarcoma. Genes Chromosomes Cancer. 1994;10(2):85–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Pedeutour F, Forus A, Coindre JM, Berner JM, Nicolo G, Michiels JF, et al. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer. 1999;24(1):30–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Rieker RJ, Weitz J, Lehner B, Egerer G, Mueller A, Kasper B, et al. Genomic profiling reveals subsets of dedifferentiated liposarcoma to follow separate molecular pathways. Virchows Arch. 2010;456(3):277–85.CrossRefPubMedGoogle Scholar
  14. 14.
    Dei Tos AP, Doglioni C, Piccinin S, Sciot R, Furlanetto A, Boiocchi M, et al. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol. 2000;190(5):531–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Conyers R, Young S, Thomas DM. Liposarcoma: molecular genetics and therapeutics. Sarcoma. 2011;2011:483154.CrossRefPubMedGoogle Scholar
  16. 16.
    Issels RD, Abdel-Rahman S, Wendtner C, Falk MH, Kurze V, Sauer H, et al. Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study. Eur J Cancer. 2001;37(13):1599–608.CrossRefPubMedGoogle Scholar
  17. 17.
    Schmitt T, Lehner B, Kasper B, Bischof M, Roeder F, Dietrich S, et al. A phase II study evaluating neo-/adjuvant EIA chemotherapy, surgical resection and radiotherapy in high-risk soft tissue sarcoma. BMC Cancer. 2011;11:510.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Adjuvant chemotherapy for localised resectable soft tissue sarcoma in adults. Sarcoma meta-analysis collaboration (SMAC). Cochrane Database Syst Rev. 2000(2):CD001419.Google Scholar
  19. 19.
    Bilimoria MM, Holtz DJ, Mirza NQ, Feig BW, Pisters PW, Patel S, et al. Tumor volume as a prognostic factor for sarcomatosis. Cancer. 2002;94(9):2441–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Salti GI, Ailabouni L, Undevia S. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for the treatment of peritoneal sarcomatosis. Ann Surg Oncol. 2012;19(5):1410–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Randle RW, Swett KR, Shen P, Stewart JH, Levine EA, Votanopoulos KI. Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in peritoneal sarcomatosis. Am Surg. 2013;79(6):620–4.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Dalal KM, Kattan MW, Antonescu CR, Brennan MF, Singer S. Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, or trunk. Ann Surg. 2006;244(3):381–91.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Peng T, Zhang P, Liu J, Nguyen T, Bolshakov S, Belousov R, et al. An experimental model for the study of well-differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors. Lab Investig. 2011;91(3):392–403.CrossRefPubMedGoogle Scholar
  24. 24.
    Stratford EW, Castro R, Daffinrud J, Skarn M, Lauvrak S, Munthe E, et al. Characterization of liposarcoma cell lines for preclinical and biological studies. Sarcoma. 2012;2012:148614.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, et al. Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One. 2010;5(4):e10105.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kiguchi K, Ishiwata I, Ishiwata E, Koshitaka Y, Ohara T, Okudai Y, et al. Establishment and characterization of a human liposarcoma cell line (HTLS) from the retroperitoneal liposarcoma. Hum Cell. 2005;18(1):45–52.CrossRefPubMedGoogle Scholar
  27. 27.
    Krieg A, Mersch S, Boeck I, Dizdar L, Weihe E, Hilal Z, et al. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines. PLoS One. 2014;9(2):e88713.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mohlendick B, Stoecklein NH. Analysis of copy-number alterations in single cells using microarray-based comparative genomic hybridization (aCGH). Curr Protoc Cell Biol. 2014;65:22 19 1–22 19 23.CrossRefGoogle Scholar
  29. 29.
    Trojani M, Contesso G, Coindre JM, Rouesse J, Bui NB, de Mascarel A, et al. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer. 1984;33(1):37–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Wibmer C, Leithner A, Zielonke N, Sperl M, Windhager R. Increasing incidence rates of soft tissue sarcomas? A population-based epidemiologic study and literature review. Ann Oncol: Off J Eur Soc Med Oncol/ ESMO. 2010;21(5):1106–11. doi: 10.1093/annonc/mdp415.CrossRefGoogle Scholar
  31. 31.
    Fogh J, Wright WC, Loveless JD. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst. 1977;58(2):209–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Binh MB, Sastre-Garau X, Guillou L, de Pinieux G, Terrier P, Lagace R, et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol. 2005;29(10):1340–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002;297(5578):102–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Tran D, Verma K, Ward K, Diaz D, Kataria E, Torabi A, et al. Functional genomics analysis reveals a MYC signature associated with a poor clinical prognosis in liposarcomas. Am J Pathol. 2015;185(3):717–28.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Sabrina Mersch
    • 1
  • Jasmin C. Riemer
    • 2
  • Philipp M. Schlünder
    • 1
  • Markus P. Ghadimi
    • 1
  • Hany Ashmawy
    • 1
  • Birte Möhlendick
    • 1
  • Stefan A. Topp
    • 1
  • Tanja Arent
    • 3
  • Patric Kröpil
    • 4
  • Nikolas H. Stoecklein
    • 1
  • Helmut E. Gabbert
    • 2
  • Wolfram T. Knoefel
    • 1
  • Andreas Krieg
    • 1
  1. 1.Department of Surgery (A)Heinrich-Heine-University and University Hospital DuesseldorfDuesseldorfGermany
  2. 2.Institute of PathologyHeinrich-Heine-University and University Hospital DuesseldorfDuesseldorfGermany
  3. 3.Institute of Forensic MedicineHeinrich-Heine-University and University Hospital DuesseldorfDuesseldorfGermany
  4. 4.Institute of Diagnostic and Interventional RadiologyHeinrich-Heine-University and University Hospital DuesseldorfDuesseldorfGermany

Personalised recommendations