Tumor Biology

, Volume 37, Issue 2, pp 2765–2771 | Cite as

MicroRNA-346 functions as an oncogene in cutaneous squamous cell carcinoma

  • Bin Chen
  • Wenyan Pan
  • Xiaoxi Lin
  • Zhenzhen Hu
  • Yunbo Jin
  • Hui Chen
  • Gang Ma
  • Yajing Qiu
  • Lei Chang
  • Chen Hua
  • Yun Zou
  • Yang Gao
  • Hanru Ying
  • Dongze Lv
Original Article


Cutaneous squamous cell carcinoma (cSCC) is an epidermal keratinocyte-derived skin tumor, which is the second most common skin cancer in the general population. Recently, studies showed that microRNAs (miRNAs) played an important role in the development of cancer. In our study, we showed that the expression of SRCIN1 was lower in cSCC tissues than in the matched normal tissues. Moreover, there was significant inversed correlation between miR-346 and SRCIN1 in cSCC tissues. The luciferase reporter assay data showed that miR-346 can target the SRCIN1 message via the 3′-untranslated region (UTR) of SRCIN1. Overexpression of miR-346 inhibited the messenger RNA (mRNA) and protein expression of SRCIN1 in the A431 cells. In addition, ectopic expression of miR-346 promoted the A431 cell proliferation and migration. Meanwhile, SRCIN1 overexpression inhibited the A431 cell proliferation and migration. Rescue experiment has showed that SRCIN1 overexpression reduced the miR-346-induced A431 cell proliferation and migration. Herein, this study may provide miR-346 as a new therapeutic target for cSCC.


Cutaneous squamous cell carcinoma miR-346 SRCIN1 Oncogene 


Conflicts of interest



  1. 1.
    Wang N, Xu ZW, Wang KH. Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes. Asian Pac J Cancer Prev: APJCP. 2014;15:10355–61.CrossRefPubMedGoogle Scholar
  2. 2.
    Greenberg ES, Chong KK, Huynh KT, Tanaka R, Hoon DS. Epigenetic biomarkers in skin cancer. Cancer Lett. 2014;342:170–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Gastaldi C, Bertero T, Xu N, Bourget-Ponzio I, Lebrigand K, Fourre S, et al. miR-193b/365a cluster controls progression of epidermal squamous cell carcinoma. Carcinogenesis. 2014;35:1110–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Bruegger C, Kempf W, Spoerri I, Arnold AW, Itin PH, Burger B. MicroRNA expression differs in cutaneous squamous cell carcinomas and healthy skin of immunocompetent individuals. Exp Dermatol. 2013;22:426–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou M, Zhou L, Zheng L, Guo L, Wang Y, Liu H, et al. miR-365 promotes cutaneous squamous cell carcinoma (CSCC) through targeting nuclear factor I/B (NFIB). PLoS ONE. 2014;9, e100620.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ning MS, Andl T. Custodians of the transcriptome: how microRNAs guard stemness in squamous epithelia. Stem Cells. 2014;33(4):1047–54.CrossRefGoogle Scholar
  7. 7.
    Sand M, Skrygan M, Georgas D, Sand D, Hahn SA, Gambichler T, et al. Microarray analysis of microRNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci. 2012;68:119–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Ning MS, Kim AS, Prasad N, Levy SE, Zhang H, Andl T. Characterization of the Merkel cell carcinoma miRNome. J Skin Cancer. 2014;2014, 289548.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yamane K, Jinnin M, Etoh T, Kobayashi Y, Shimozono N, Fukushima S, et al. Down-regulation of miR-124/-214 in cutaneous squamous cell carcinoma mediates abnormal cell proliferation via the induction of ERK. J Mol Med (Berl). 2013;91:69–81.CrossRefGoogle Scholar
  10. 10.
    Kanitz A, Imig J, Dziunycz PJ, Primorac A, Galgano A, Hofbauer GF, et al. The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma. PLoS ONE. 2012;7, e49568.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang A, Landen NX, Meisgen F, Lohcharoenkal W, Stahle M, Sonkoly E, et al. MicroRNA-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell motility and colony formation ability of tumor cells. PLoS ONE. 2014;9, e103206.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hameetman L, Commandeur S, Bavinck JN, Wisgerhof HC, de Gruijl FR, Willemze R, et al. Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients. BMC Cancer. 2013;13:58.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yu X, Li Z. MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (review). Int J Mol Med. 2014;34:923–33.PubMedGoogle Scholar
  14. 14.
    Li Z, Lei H, Luo M, Wang Y, Dong L, Ma Y, et al. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. 2015;18:43–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget. 2015;6(7):4562–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu G, Liu R, Li Q, Tang X, Yu M, Li X, et al. Identification of microRNAs in wool follicles during anagen, catagen, and telogen phases in Tibetan sheep. PLoS ONE. 2013;8, e77801.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li Z, Yu X, Shen J, Chan MT, Wu WK. MicroRNA in intervertebral disc degeneration. Cell Prolif. 2015;48(3):278–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Li Z, Yu X, Wang Y, Shen J, Wu WK, Liang J, et al. By downregulating TIAM1 expression, microRNA-329 suppresses gastric cancer invasion and growth. Oncotarget. 2014;6(19):17559–69.CrossRefGoogle Scholar
  19. 19.
    Yu X, Li Z, Shen J, Wu WK, Liang J, Weng X, et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervertebral disc degeneration. PLoS ONE. 2013;8, e83080.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rao SA, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA, et al. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS ONE. 2013;8, e63164.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu X, Weng L, Li X, Guo C, Pal SK, Jin JM, et al. Identification of a 4-microRNA signature for clear cell renal cell carcinoma metastasis and prognosis. PLoS ONE. 2012;7, e35661.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo X, et al. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS ONE. 2012;7, e41629.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jung CJ, Iyengar S, Blahnik KR, Ajuha TP, Jiang JX, Farnham PJ, et al. Epigenetic modulation of miR-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PLoS ONE. 2011;6, e27740.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vrba L, Munoz-Rodriguez JL, Stampfer MR, Futscher BW. Mirna gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS ONE. 2013;8, e54398.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Denoyelle C, Lambert B, Meryet-Figuiere M, Vigneron N, Brotin E, Lecerf C, et al. miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation. Cell Death Dis. 2014;5, e1445.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rao PK, Missiaglia E, Shields L, Hyde G, Yuan B, Shepherd CJ, et al. Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J. 2010;24:3427–37.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Worley LA, Long MD, Onken MD, Harbour JW. Micro-RNAs associated with metastasis in uveal melanoma identified by multiplexed microarray profiling. Melanoma Res. 2008;18:184–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Yu X, Li Z, Liu J. MiRNAs in primary cutaneous lymphomas. Cell Prolif. 2015;48(3):271–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Li Z, Yu X, Shen J, Wu WK, Chan MT. MicroRNA expression and its clinical implications in Ewing’s sarcoma. Cell Prolif. 2015;48:1–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 2008;68:1362–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Langevin SM, Stone RA, Bunker CH, Grandis JR, Sobol RW, Taioli E. MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis. 2010;31:864–70.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Alsaleh G, Suffert G, Semaan N, Juncker T, Frenzel L, Gottenberg JE, et al. Bruton’s tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol. 2009;182:5088–97.CrossRefPubMedGoogle Scholar
  33. 33.
    Chen Y, Du J, Zhang Z, Liu T, Shi Y, Ge X, et al. MicroRNA-346 mediates tumor necrosis factor alpha-induced downregulation of gut epithelial vitamin d receptor in inflammatory bowel diseases. Inflamm Bowel Dis. 2014;20:1910–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chen J, Tian J, Tang X, Rui K, Ma J, Mao C, et al. MiR-346 regulates CD4+CXCR5+ T cells in the pathogenesis of Graves’ disease. Endocrine. 2015;49(3):752–60.CrossRefPubMedGoogle Scholar
  35. 35.
    Semaan N, Frenzel L, Alsaleh G, Suffert G, Gottenberg JE, Sibilia J, et al. miR-346 controls release of TNF-alpha protein and stability of its mRNA in rheumatoid arthritis via tristetraprolin stabilization. PLoS ONE. 2011;6, e19827.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xiao J, Liu D, Jiao W, Guo J, Wang X, Zhang X, et al. Effects of microRNA-346 on epithelial-mesenchymal transition in mouse podocytes. Gene. 2015;560:195–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Cabodi S, del Pilar C-LM, Di Stefano P, Defilippi P. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer. 2010;10:858–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Repetto D, Aramu S, Boeri Erba E, Sharma N, Grasso S, Russo I, et al. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase. PLoS ONE. 2013;8, e54931.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yamauchi M, Sudo K, Ito H, Iwamoto I, Morishita R, Murai T, et al. Localization of multidomain adaptor proteins, p140Cap and vinexin, in the pancreatic islet of a spontaneous diabetes mellitus model, Otsuka Long-Evans Tokushima fatty rats. Med Mol Morphol. 2013;46:41–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Sharma N, Repetto D, Aramu S, Grasso S, Russo I, Fiorentino A, et al. Identification of two regions in the p140Cap adaptor protein that retain the ability to suppress tumor cell properties. Am J Cancer Res. 2013;3:290–301.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Di Stefano P, Damiano L, Cabodi S, Aramu S, Tordella L, Praduroux A, et al. p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J. 2007;26:2843–55.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50(5):1013–24.CrossRefPubMedGoogle Scholar
  43. 43.
    Xu X, Wang W, Su N, Zhu X, Yao J, Gao W, et al. miR-374a promotes cell proliferation, migration and invasion by targeting SRCIN1 in gastric cancer. FEBS Lett. 2015;589:407–13.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Bin Chen
    • 1
    • 2
  • Wenyan Pan
    • 3
  • Xiaoxi Lin
    • 1
  • Zhenzhen Hu
    • 4
  • Yunbo Jin
    • 1
  • Hui Chen
    • 1
  • Gang Ma
    • 1
  • Yajing Qiu
    • 1
  • Lei Chang
    • 1
  • Chen Hua
    • 1
  • Yun Zou
    • 1
  • Yang Gao
    • 1
  • Hanru Ying
    • 1
  • Dongze Lv
    • 1
  1. 1.Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Plastic and Reconstructive Surgery, Liuzhou Worker’s HospitalThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouChina
  3. 3.Department of Neurosurgery, Liuzhou Worker’s HospitalThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouChina
  4. 4.Department of Plastic Surgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina

Personalised recommendations