Advertisement

Tumor Biology

, Volume 36, Issue 11, pp 8239–8246 | Cite as

Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances

  • Nikhil Tyagi
  • Monika Tyagi
  • Manendra Pachauri
  • Prahlad C. Ghosh
Review

Abstract

Cancer is one of the most common devastating disease affecting millions of people per year worldwide. To fight against cancer, a number of natural plant compounds have been exploited by researchers to discover novel anti-cancer therapeutics with minimum or no side effects and plants have proved their usefulness in anti-cancer therapy in past few years. Ricin, a cytotoxic plant protein isolated from castor bean seeds, is a ribosome-inactivating protein which destroys the cells by inhibiting proteins synthesis. Ricin presents great potential as anti-cancer agent and exerts its anti-cancer activity by inducing apoptosis in cancer cells. In this review, we summarize the current information on anti-cancer properties of plant toxin ricin, its potential applications in cancer therapy, challenges associated with its use as therapeutic agent and the recent advances made to overcome these challenges. Nanotechnology could open the doors for quick development of ricin-based anti-cancer therapeutics. Conceivably, ricin may serve as a chemotherapeutic agent against cancer by utilizing nanocarriers for its targeted delivery to cancer cells.

Keywords

Ricin Liposomes Plant toxin Drug delivery RTA Immunotoxins 

Notes

Acknowledgments

Conflict of interest

None

References

  1. 1.
    Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1:505–27.CrossRefPubMedGoogle Scholar
  2. 2.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMedGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  4. 4.
    Stewart BW. Wild CPe: World Cancer Report 2014. International Agency for Research on Cancer.: Lyon, France; 2014.Google Scholar
  5. 5.
    Deshmukh SK, Srivastava SK, Bhardwaj A, Singh AP, Tyagi N, Marimuthu S, et al. Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation. Oncotarget. 2015;6:11231–41.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Arora S, Tyagi N, Bhardwaj A, Rusu L, Palanki R, Vig K, et al. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis. Nanomedicine. 2015;11:1265–75.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bhardwaj A, Srivastava SK, Singh S, Arora S, Tyagi N, Andrews J, et al. CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget. 2014;5:11490–500.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Iki S, Urabe A. [Prevention and treatment of the side effects of cancer chemotherapy]. Gan To Kagaku Ryoho. 2000;27:1635–40.PubMedGoogle Scholar
  9. 9.
    Ramirez LY, Huestis SE, Yap TY, Zyzanski S, Drotar D, Kodish E. Potential chemotherapy side effects: what do oncologists tell parents? Pediatr Blood Cancer. 2009;52:497–502.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ram VJ, Kumari S. Natural products of plant origin as anticancer agents. Drug News Perspect. 2001;14:465–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Solowey E, Lichtenstein M, Sallon S, Paavilainen H, Solowey E, Lorberboum-Galski H: Evaluating medicinal plants for anticancer activity. ScientificWorldJournal 2014. doi: 10.1155/2014/721402.
  12. 12.
    Olsnes S. The history of ricin, abrin and related toxins. Toxicon. 2004;44:361–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Greenwood JS, Helm M, Gietl C. Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci U S A. 2005;102:2238–43.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schmid M, Simpson D, Kalousek F, Gietl C. A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta. 1998;206:466–75.CrossRefPubMedGoogle Scholar
  15. 15.
    Schmid M, Simpson D, Gietl C. Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc Natl Acad Sci U S A. 1999;96:14159–64.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Frigerio L, Vitale A, Lord JM, Ceriotti A, Roberts LM. Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem. 1998;273:14194–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Lord JM. Precursors of ricin and Ricinus communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. Eur J Biochem. 1985;146:411–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Roberts LM, Lamb FI, Pappin DJ, Lord JM. The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J Biol Chem. 1985;260:15682–6.PubMedGoogle Scholar
  19. 19.
    Richardson PT, Westby M, Roberts LM, Gould JH, Colman A, Lord JM. Recombinant proricin binds galactose but does not depurinate 28 S ribosomal RNA. FEBS Lett. 1989;255:15–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Wright HT, Robertus JD. The intersubunit disulfide bridge of ricin is essential for cytotoxicity. Arch Biochem Biophys. 1987;256:280–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Harley SM, Beevers H. Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc Natl Acad Sci U S A. 1982;79:5935–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. Eur J Biochem. 1997;246:133–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Olsnes S, Pihl A. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry. 1973;12:3121–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Barbieri L, Valbonesi P, Gorini P, Pession A, Stirpe F. Polynucleotide: adenosine glycosidase activity of saporin-L1: effect on DNA, RNA and poly(A). Biochem J. 1996;319:507–13.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol. 1985;101:548–59.CrossRefPubMedGoogle Scholar
  26. 26.
    Foxwell BM, Blakey DC, Brown AN, Donovan TA, Thorpe PE. The preparation of deglycosylated ricin by recombination of glycosidase-treated A- and B-chains: effects of deglycosylation on toxicity and in vivo distribution. Biochim Biophys Acta. 1987;923:59–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Simmons BM, Stahl PD, Russell JH. Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for a chain translocation. J Biol Chem. 1986;261:7912–20.PubMedGoogle Scholar
  28. 28.
    Audi J, Belson M, Patel M, Schier J, Osterloh J. Ricin poisoning: a comprehensive review. JAMA. 2005;294:2342–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Sandvig K, Spilsberg B, Lauvrak SU, Torgersen ML, Iversen TG, van Deurs B. Pathways followed by protein toxins into cells. Int J Med Microbiol. 2004;293:483–90.CrossRefPubMedGoogle Scholar
  30. 30.
    van Deurs B, Sandvig K, Petersen OW, Olsnes S, Simons K, Griffiths G. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J Cell Biol. 1988;106:253–67.CrossRefPubMedGoogle Scholar
  31. 31.
    Sandvig K, van Deurs B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 2002;529:49–53.CrossRefPubMedGoogle Scholar
  32. 32.
    Kornfeld SB, Leonard JE, Mullen MD, Taetle R. Assessment of ligand effects in intracellular trafficking of ricin A chain using anti-ricin hybridomas. Cancer Res. 1991;51:1689–93.PubMedGoogle Scholar
  33. 33.
    Youle RJ, Colombatti M. Hybridoma cells containing intracellular anti-ricin antibodies show ricin meets secretory antibody before entering the cytosol. J Biol Chem. 1987;262:4676–82.PubMedGoogle Scholar
  34. 34.
    Lord MJ, Jolliffe NA, Marsden CJ, Pateman CS, Smith DC, Spooner RA, et al. Ricin. Mechanisms of cytotoxicity. Toxicol Rev. 2003;22:53–64.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang WA, Groenendyk J, Michalak M. Endoplasmic reticulum stress associated responses in cancer. Biochim Biophys Acta. 1843;2014:2143–9.Google Scholar
  36. 36.
    Hartley MR, Lord JM. Cytotoxic ribosome-inactivating lectins from plants. Biochim Biophys Acta. 1701;2004:1–14.Google Scholar
  37. 37.
    Chamberlain KL, Marshall RS, Jolliffe NA, Frigerio L, Ceriotti A, Lord JM, et al. Ricin B chain targeted to the endoplasmic reticulum of tobacco protoplasts is degraded by a CDC48- and vacuole-independent mechanism. J Biol Chem. 2008;283:33276–86.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Endo Y, Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987;262:8128–30.PubMedGoogle Scholar
  39. 39.
    Rajamohan F, Mao C, Uckun FM. Binding interactions between the active center cleft of recombinant pokeweed antiviral protein and the alpha-sarcin/ricin stem loop of ribosomal RNA. J Biol Chem. 2001;276:24075–81.CrossRefPubMedGoogle Scholar
  40. 40.
    Li XP, Grela P, Krokowski D, Tchorzewski M, Tumer NE. Pentameric organization of the ribosomal stalk accelerates recruitment of ricin a chain to the ribosome for depurination. J Biol Chem. 2010;285:41463–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol. 2012;4:a013706.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Brigotti M, Rambelli F, Zamboni M, Montanaro L, Sperti S. Effect of alpha-sarcin and ribosome-inactivating proteins on the interaction of elongation factors with ribosomes. Biochem J. 1989;257:723–7.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dai J, Zhao L, Yang H, Guo H, Fan K, Wang H, et al. Identification of a novel functional domain of ricin responsible for its potent toxicity. J Biol Chem. 2011;286:12166–71.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Griffiths GD, Leek MD, Gee DJ. The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine. J Pathol. 1987;151:221–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Hughes JN, Lindsay CD, Griffiths GD. Morphology of ricin and abrin exposed endothelial cells is consistent with apoptotic cell death. Hum Exp Toxicol. 1996;15:443–51.CrossRefPubMedGoogle Scholar
  46. 46.
    Liao P, Liu W, Li H, Gao H, Wang H, Li N, et al. Morphological changes of ricin toxin-induced apoptosis in human cervical cancer cells. Toxicol Ind Health. 2012;28:439–48.CrossRefPubMedGoogle Scholar
  47. 47.
    Rao PV, Jayaraj R, Bhaskar AS, Kumar O, Bhattacharya R, Saxena P, et al. Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem Pharmacol. 2005;69:855–65.CrossRefPubMedGoogle Scholar
  48. 48.
    Wu YH, Shih SF, Lin JY. Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J Biol Chem. 2004;279:19264–75.CrossRefPubMedGoogle Scholar
  49. 49.
    Srivastava SK, Bhardwaj A, Arora S, Tyagi N, Singh S, Andrews J, et al. MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br J Cancer. 2015;113:660–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fiandalo MV, Kyprianou N. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol. 2012;34:165–75.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997;89:175–84.CrossRefPubMedGoogle Scholar
  53. 53.
    Hasegawa N, Kimura Y, Oda T, Komatsu N, Muramatsu T. Isolated ricin B-chain-mediated apoptosis in U937 cells. Biosci Biotechnol Biochem. 2000;64:1422–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Keppler-Hafkemeyer A, Brinkmann U, Pastan I. Role of caspases in immunotoxin-induced apoptosis of cancer cells. Biochemistry. 1998;37:16934–42.CrossRefPubMedGoogle Scholar
  55. 55.
    Sha O, Yew DT, Ng TB, Yuan L, Kwong WH. Different in vitro toxicities of structurally similar type I ribosome-inactivating proteins (RIPs). Toxicol In Vitro. 2010;24:1176–82.CrossRefPubMedGoogle Scholar
  56. 56.
    Mosinger M. [Necrosing or clastic effects of ricin on different organs and on experimental sarcomas]. C R Seances Soc Biol Fil. 1951;145:412–5.PubMedGoogle Scholar
  57. 57.
    Lin JY, Chang YC, Huang LY, Tung TC. The cytotoxic effects of abrin and ricin on Ehrlich ascites tumor cells. Toxicon. 1973;11:379–81.CrossRefPubMedGoogle Scholar
  58. 58.
    Fodstad O, Olsnes S. Studies on the accessability of ribosomes to inactivation by the toxic lectins abrin and ricin. Eur J Biochem. 1977;74:209–15.CrossRefPubMedGoogle Scholar
  59. 59.
    Fodstad O, Kvalheim G, Godal A, Lotsberg J, Aamdal S, Host H, et al. Phase I study of the plant protein ricin. Cancer Res. 1984;44:862–5.PubMedGoogle Scholar
  60. 60.
    Singh M, Griffin T, Salimi A, Micetich RG, Atwal H. Potentiation of ricin A immunotoxin by monoclonal antibody targeted monensin containing small unilamellar vesicles. Cancer Lett. 1994;84:15–21.CrossRefPubMedGoogle Scholar
  61. 61.
    Smaglo BG, Aldeghaither D, Weiner LM. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol. 2014;11:637–48.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Singh V, Sairam MR, Bhargavi GN, Akhras RG. Hormonotoxins. Preparation and characterization of ovine luteinizing hormone-gelonin conjugate. J Biol Chem. 1989;264:3089–95.PubMedGoogle Scholar
  63. 63.
    Neville Jr DM, Youle RJ. Monoclonal antibody-ricin or ricin A chain hybrids: kinetic analysis of cell killing for tumor therapy. Immunol Rev. 1982;62:75–91.Google Scholar
  64. 64.
    Wawrzynczak EJ, Watson GJ, Cumber AJ, Henry RV, Parnell GD, Rieber EP, et al. Blocked and non-blocked ricin immunotoxins against the CD4 antigen exhibit higher cytotoxic potency than a ricin A chain immunotoxin potentiated with ricin B chain or with a ricin B chain immunotoxin. Cancer Immunol Immunother. 1991;32:289–95.CrossRefPubMedGoogle Scholar
  65. 65.
    Preijers FW, Tax WJ, de Witte T, Janssen A, vd Heijden H, Vidal H, et al. Relationship between internalization and cytotoxicity of ricin A-chain immunotoxins. Br J Haematol. 1988;70:289–94.CrossRefPubMedGoogle Scholar
  66. 66.
    van Horssen PJ, van Oosterhout YV, de Witte T, Preijers FW. Cytotoxic potency of CD22-ricin A depends on intracellular routing rather than on the number of internalized molecules. Scand J Immunol. 1995;41:563–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Kreitman RJ. Immunotoxins for targeted cancer therapy. AAPS J. 2006;8:E532–51.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Antignani A, Fitzgerald D. Immunotoxins: the role of the toxin. Toxins (Basel). 2013;5:1486–502.CrossRefGoogle Scholar
  69. 69.
    Press OW, Vitetta ES, Farr AG, Hansen JA, Martin PJ. Evaluation of ricin A-chain immunotoxins directed against human T cells. Cell Immunol. 1986;102:10–20.CrossRefPubMedGoogle Scholar
  70. 70.
    Raso V, Lawrence J. Carboxylic ionophores enhance the cytotoxic potency of ligand- and antibody-delivered ricin A chain. J Exp Med. 1984;160:1234–40.CrossRefPubMedGoogle Scholar
  71. 71.
    Timar J, McIntosh DP, Henry R, Cumber AJ, Parnell GD, Davies AJ. The effect of ricin B chain on the intracellular trafficking of an A chain immunotoxin. Br J Cancer. 1991;64:655–62.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Baluna R, Rizo J, Gordon BE, Ghetie V, Vitetta ES. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc Natl Acad Sci U S A. 1999;96:3957–62.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Blakey DC, Skilleter DN, Price RJ, Watson GJ, Hart LI, Newell DR, et al. Comparison of the pharmacokinetics and hepatotoxic effects of saporin and ricin A-chain immunotoxins on murine liver parenchymal cells. Cancer Res. 1988;48:7072–8.PubMedGoogle Scholar
  74. 74.
    Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9:E128–47.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target 2015;1–13Google Scholar
  76. 76.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.CrossRefPubMedGoogle Scholar
  77. 77.
    Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE, Singh S. p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget. 2014;5:8778–89.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Srivastava SK, Bhardwaj A, Arora S, Tyagi N, Singh AP, Carter JE, et al. Interleukin-8 is a key mediator of FKBP51-induced melanoma growth, angiogenesis and metastasis. Br J Cancer. 2015;112:1772–81.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shkedy D, Singh N, Shemesh K, Geiger AA, Liefshitz T, Harari B, et al. Regulation of Elg1 activity by phosphorylation. Cell Cycle. 2015.Google Scholar
  80. 80.
    Nicolson GL, Poste G. Mechanism of resistance to ricin toxin in selected mouse lymphoma cell lines. J Supramol Struct. 1978;8:235–45.CrossRefPubMedGoogle Scholar
  81. 81.
    Dimitriadis GJ, Butters TD. Liposome-mediated ricin toxicity in ricin-resistant cells. FEBS Lett. 1979;98:33–6.CrossRefPubMedGoogle Scholar
  82. 82.
    Gardas A, Macpherson I. Microinjection of ricin entrapped in unilamellar liposomes into a ricin-resistant mutant of baby hamster kidney cells. Biochim Biophys Acta. 1979;584:538–41.CrossRefPubMedGoogle Scholar
  83. 83.
    Bharadwaj S, Rathore SS, Ghosh PC. Enhancement of the cytotoxicity of liposomal ricin by the carboxylic ionophore monensin and the lysosomotropic amine NH4Cl in Chinese hamster ovary cells. Int J Toxicol. 2006;25:349–59.CrossRefPubMedGoogle Scholar
  84. 84.
    Rathore SS, Ghosh PC. Effect of surface charge and density of distearylphosphatidylethanolamine-mPEG-2000 (DSPE-mPEG-2000) on the cytotoxicity of liposome-entrapped ricin: effect of lysosomotropic agents. Int J Pharm. 2008;350:79–94.CrossRefPubMedGoogle Scholar
  85. 85.
    Tyagi N, Rathore SS, Ghosh PC. Enhanced killing of human epidermoid carcinoma (KB) cells by treatment with ricin encapsulated into sterically stabilized liposomes in combination with monensin. Drug Deliv. 2011;18:394–404.CrossRefPubMedGoogle Scholar
  86. 86.
    Tyagi N, Rathore SS, Ghosh PC. Efficacy of liposomal monensin on the enhancement of the antitumour activity of liposomal ricin in human epidermoid carcinoma (KB) cells. Indian J Pharm Sci. 2013;75:16–22.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Pattrick NG, Richardson SC, Casolaro M, Ferruti P, Duncan R. Poly(amidoamine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin. J Control Release. 2001;77:225–32.CrossRefPubMedGoogle Scholar
  88. 88.
    Watanabe Y, Osawa T. Effect of ricin or ricin A-chain encapsulated in anti-carcinoembryonic antigen (CEA) antibody-bearing liposomes on CEA-producing tumor cells. Chem Pharm Bull (Tokyo). 1987;35:740–7.CrossRefGoogle Scholar
  89. 89.
    Zhang J, Qin DA, Cheng BX, Ru XQ, Li H, Li L, et al. Preparation, characteristics and toxicity of ricin-containing galactosyl ceramide liposomes. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 1999;31:472–4.Google Scholar
  90. 90.
    Epler K, Padilla D, Phillips G, Crowder P, Castillo R, Wilkinson D, et al. Delivery of ricin toxin a-chain by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. Adv Healthc Mater. 2012;1:348–53.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gao XN, Tang SQ. [Folate receptor and its application in the selective receptor-mediated targeting therapy of tumor cells—review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2005;13:911–4.PubMedGoogle Scholar
  92. 92.
    Gosselin MA, Lee RJ. Folate receptor-targeted liposomes as vectors for therapeutic agents. Biotechnol Annu Rev. 2002;8:103–31.Google Scholar
  93. 93.
    Tyagi N, Ghosh PC. Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: effect of monensin intercalated into folate-tagged liposomes. Eur J Pharm Sci. 2011;43:343–53.CrossRefPubMedGoogle Scholar
  94. 94.
    Weng X, Wang M, Ge J, Yu S, Liu B, Zhong J, et al. Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol Biosyst. 2009;5:1224–31.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Nikhil Tyagi
    • 1
    • 3
  • Monika Tyagi
    • 2
  • Manendra Pachauri
    • 1
  • Prahlad C. Ghosh
    • 1
  1. 1.Department of BiochemistryUniversity of Delhi South CampusDelhiIndia
  2. 2.Department of Plant and Molecular BiologyUniversity of Delhi South CampusDelhiIndia
  3. 3.Department of Oncologic Sciences, Mitchell Cancer InstituteUniversity of South AlabamaMobileUSA

Personalised recommendations