Advertisement

Tumor Biology

, Volume 37, Issue 2, pp 2119–2126 | Cite as

Interleukin-16 polymorphisms as new promising biomarkers for risk of gastric cancer

  • Seyed Mohammad Hossein Kashfi
  • Faegheh Behboudi Farahbakhsh
  • Ehsan Nazemalhosseini Mojarad
  • Kazem Mashayekhi
  • Pedram Azimzadeh
  • Sara Romani
  • Shaghayegh Derakhshani
  • Habib Malekpour
  • Hamid Asadzadeh Aghdaei
  • Mohammad Reza Zali
Original Article

Abstract

Gastric cancer (GC) is the second cause of cancer-related death worldwide. Interleukin (IL)-16 has a vital role in the development and homeostasis of the immune system. In the present study, we evaluated an exon variant rs4072111 C/T polymorphism and 3′ UTR variant rs1131445 C/T within the miRNA binding with gastric cancer susceptibility in Iranian population. Genomic DNA was isolated from peripheral blood samples according to phenol chloroform extraction. The genotypes of IL-16 polymorphisms rs1131445 T/C and rs4072111 T/C were determined by polymerase chain reaction-restriction fragment length polymorphism method. In this case control study, a total of 256 patients with gastric cancer (238 cases (92.9 %) non-cardia and 18 cases (7.1 %) cardia) and 300 healthy control subjects were evaluated. In the present study, we found a significant association between rs4072111 of IL-16 gene and risk of GC in Iranian population. Individuals with CT genotype showed a significant association with 1.79-fold increased risk of GC (P = 0.008; adjusted OR 1.792; 95 % CI 1.164–2.759). The significant association was also detected for T allele of rs4072111 and increased risk of GC (P < 0.001; adjusted OR 1.981; 95 % CI 1.354–2.900). We also observed statistically a significant relationship between rs1131445 of IL-16 CT genotype and GC risk. Carriers of IL-16 CT genotype compared with TT genotype had 1.44 times higher increased likelihood of GC (P = 0.048; adjusted OR 1.445; 95 % CI 1.003–2.084). After stratification according to gender, we observed that in rs1131445, CT and CC male carriers had a higher risk of GC than females (P = 0.08; adjusted OR 1.608; 95 % CI 0.945–2.737 and P = 0.08; adjusted OR 2.186; 95 % CI 0.897–5.325, respectively). We also observed that for male carriers with C allele in rs1131445, there was a 1.53-fold higher risk of GC risk than female subjects (P = 0.029; adjusted OR 1.53; 95 % CI 1.04.4–2.248). We found that the rs1131445 T/C and rs4072111 T/C variants of IL-16 were significantly associated with increased risk of GC in Iranian population.

Keywords

Gastric cancer IL-16 Polymorphism 

Notes

Acknowledgments

We thank all patients and their families who supported us in this study.

Conflicts of interest

None

References

  1. 1.
    Ly QP, Sasson AR. Modern surgical considerations for gastric cancer. J Natl Compr Cancer Netw. 2008;6(9):885–94.Google Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. doi: 10.3322/caac.20138.CrossRefPubMedGoogle Scholar
  3. 3.
    Steevens J, Schouten LJ, Goldbohm RA, van den Brandt PA. Alcohol consumption, cigarette smoking and risk of subtypes of oesophageal and gastric cancer: a prospective cohort study. Gut. 2010;59(1):39–48. doi: 10.1136/gut.2009.191080.CrossRefPubMedGoogle Scholar
  4. 4.
    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345(11):784–9. doi: 10.1056/NEJMoa001999.CrossRefPubMedGoogle Scholar
  5. 5.
    Sung NY, Choi KS, Park EC, Park K, Lee SY, Lee AK, et al. Smoking, alcohol and gastric cancer risk in Korean men: the National Health Insurance Corporation Study. Br J Cancer. 2007;97(5):700–4. doi: 10.1038/sj.bjc.6603893.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ychou M, Boige V, Pignon JP, Conroy T, Bouche O, Lebreton G, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol. 2011;29(13):1715–21. doi: 10.1200/jco.2010.33.0597.CrossRefPubMedGoogle Scholar
  7. 7.
    Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet. 2012;379(9813):315–21. doi: 10.1016/s0140-6736(11)61873-4.CrossRefPubMedGoogle Scholar
  8. 8.
    Kovoor PA, Hwang J. Treatment of resectable gastric cancer: current standards of care. Expert Rev Anticancer Ther. 2009;9(1):135–42. doi: 10.1586/14737140.9.1.135.CrossRefPubMedGoogle Scholar
  9. 9.
    Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet. 2009;374(9688):477–90. doi: 10.1016/s0140-6736(09)60617-6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Azimzadeh P, Romani S, Mohebbi SR, Kazemian S, Vahedi M, Almasi S, et al. Interleukin-16 (IL-16) gene polymorphisms in Iranian patients with colorectal cancer. J Gastrointestin Liver Dis. 2011;20(4):371–6.PubMedGoogle Scholar
  11. 11.
    Azimzadeh P, Romani S, Mohebbi SR, Mahmoudi T, Vahedi M, Fatemi SR, et al. Association of polymorphisms in microRNA-binding sites and colorectal cancer in an Iranian population. Cancer Genet. 2012;205(10):501–7. doi: 10.1016/j.cancergen.2012.05.013.CrossRefPubMedGoogle Scholar
  12. 12.
    Romani S, Hosseini SM, Mohebbi SR, Kazemian S, Derakhshani S, Khanyaghma M et al. Interleukin-16 gene polymorphisms are considerable host genetic factors for patients’ susceptibility to chronic hepatitis B infection. 2014; 2014:790753. doi: 10.1155/2014/790753.
  13. 13.
    Center DM, Cruikshank W. Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol (Baltimore, Md: 1950). 1982;128(6):2563–8.Google Scholar
  14. 14.
    Yellapa A, Bahr JM, Bitterman P, Abramowicz JS, Edassery SL, Penumatsa K, et al. Association of interleukin 16 with the development of ovarian tumor and tumor-associated neoangiogenesis in laying hen model of spontaneous ovarian cancer. Int J Gynecol Cancer. 2012;22(2):199–207. doi: 10.1097/IGC.0b013e318236a27b.CrossRefPubMedGoogle Scholar
  15. 15.
    Fina D, Pallone F. What is the role of cytokines and chemokines in IBD? Inflamm Bowel Dis. 2008;14 Suppl 2:S117–8. doi: 10.1002/ibd.20677.CrossRefPubMedGoogle Scholar
  16. 16.
    Mathy NL, Scheuer W, Lanzendorfer M, Honold K, Ambrosius D, Norley S, et al. Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology. 2000;100(1):63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mochizuki Y, Nakanishi H, Kodera Y, Ito S, Yamamura Y, Kato T, et al. TNF-α promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clin Exp Metastasis. 2004;21(1):39–47.CrossRefPubMedGoogle Scholar
  18. 18.
    Chung YC, Chang YF. Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol. 2003;83(4):222–6. doi: 10.1002/jso.10269.CrossRefPubMedGoogle Scholar
  19. 19.
    Shanmugham LN, Petrarca C, Frydas S, Donelan J, Castellani ML, Boucher W, et al. IL-15 an immunoregulatory and anti-cancer cytokine. Recent advances. J Exp Clin Cancer Res. 2006;25(4):529–36.PubMedGoogle Scholar
  20. 20.
    Gao LB, Liang WB, Xue H, Rao L, Pan XM, Lv ML, et al. Genetic polymorphism of interleukin-16 and risk of nasopharyngeal carcinoma. Clin Chim Acta. 2009;409(1–2):132–5. doi: 10.1016/j.cca.2009.09.017.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu J, Qin C, Yan F, Wang M, Ding Q, Zhang Z, et al. IL-16 polymorphism and risk of renal cell carcinoma: association in a Chinese population. Int J Urol. 2010;17(8):700–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhao Y, Tao L, Wang B, Nie P, Tang Y, Zhu M. Interleukin-16 gene polymorphisms rs4778889, rs4072111, rs11556218, and cancer risk in Asian populations: a meta-analysis. Genet Test Mol Biomarkers. 2014;18(3):174–82. doi: 10.1089/gtmb.2013.0386.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang T, Wang H. Variants of interleukin-16 associated with gastric cancer risk. Asian Pac J Cancer Prev. 2013;14(9):5269–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Luo QS, Wang JL, Deng YY, Huang HD, Fu HD, Li CY, et al. Interleukin-16 polymorphism is associated with an increased risk of glioma. Genet Test Mol Biomarkers. 2014;18(10):711–4. doi: 10.1089/gtmb.2014.0170.CrossRefPubMedGoogle Scholar
  25. 25.
    Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 2008;40(3):310–5. doi: 10.1038/ng.91.CrossRefPubMedGoogle Scholar
  26. 26.
    Comperat E, Roupret M, Drouin SJ, Camparo P, Bitker MO, Houlgatte A, et al. Tissue expression of IL16 in prostate cancer and its association with recurrence after radical prostatectomy. Prostate. 2010;70(15):1622–7. doi: 10.1002/pros.21197.CrossRefPubMedGoogle Scholar
  27. 27.
    Hughes L, Ruth K, Rebbeck TR, Giri VN. Genetic variation in IL-16 miRNA target site and time to prostate cancer diagnosis in African-American men. Prostate Cancer Prostatic Dis. 2013;16(4):308–14. doi: 10.1038/pcan.2013.36.CrossRefPubMedGoogle Scholar
  28. 28.
    Qin X, Peng Q, Lao X, Chen Z, Lu Y, Lao X, et al. The association of interleukin-16 gene polymorphisms with IL-16 serum levels and risk of nasopharyngeal carcinoma in a Chinese population. Tumour Biol. 2014;35(3):1917–24. doi: 10.1007/s13277-013-1257-2.CrossRefPubMedGoogle Scholar
  29. 29.
    Gao LB, Rao L, Wang YY, Liang WB, Li C, Xue H, et al. The association of interleukin-16 polymorphisms with IL-16 serum levels and risk of colorectal and gastric cancer. Carcinogenesis. 2009;30(2):295–9. doi: 10.1093/carcin/bgn281.CrossRefPubMedGoogle Scholar
  30. 30.
    Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. doi: 10.1016/j.cell.2010.01.025.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659(1–2):15–30. doi: 10.1016/j.mrrev.2008.03.002.CrossRefPubMedGoogle Scholar
  33. 33.
    Muc-Wierzgon M, Nowakowska-Zajdel E, Kokot T, Kozowicz A, Wiczkowski A, Grochowska-Niedworok E, et al. Genetic dysregulation of TNF alpha and TNF alpha type II receptors in colon cancer at the II and III stage of disease. J Biol Regul Homeost Agents. 2006;20(1–2):10–4.PubMedGoogle Scholar
  34. 34.
    Kai H, Kitadai Y, Kodama M, Cho S, Kuroda T, Ito M, et al. Involvement of proinflammatory cytokines IL-1beta and IL-6 in progression of human gastric carcinoma. Anticancer Res. 2005;25(2a):709–13.PubMedGoogle Scholar
  35. 35.
    Speetjens FM, Kuppen PJ, Sandel MH, Menon AG, Burg D, van de Velde CJ, et al. Disrupted expression of CXCL5 in colorectal cancer is associated with rapid tumor formation in rats and poor prognosis in patients. Clin Cancer Res. 2008;14(8):2276–84. doi: 10.1158/1078-0432.ccr-07-4045.CrossRefPubMedGoogle Scholar
  36. 36.
    Kollmar O, Rupertus K, Scheuer C, Junker B, Tilton B, Schilling MK, et al. Stromal cell-derived factor-1 promotes cell migration and tumor growth of colorectal metastasis. Neoplasia (New York, NY). 2007;9(10):862–70.CrossRefGoogle Scholar
  37. 37.
    Glass WG, Sarisky RT, Vecchio AM. Not-so-sweet sixteen: the role of IL-16 in infectious and immune-mediated inflammatory diseases. J Interf Cytokine Res. 2006;26(8):511–20. doi: 10.1089/jir.2006.26.511.CrossRefGoogle Scholar
  38. 38.
    Laberge S, Cruikshank WW, Kornfeld H, Center DM. Histamine-induced secretion of lymphocyte chemoattractant factor from CD8+ T cells is independent of transcription and translation. Evidence for constitutive protein synthesis and storage. J Immunol (Baltimore, Md : 1950). 1995;155(6):2902–10.Google Scholar
  39. 39.
    Sharma V, Sparks JL, Vail JD. Human B-cell lines constitutively express and secrete interleukin-16. Immunology. 2000;99(2):266–71.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rumsaeng V, Cruikshank WW, Foster B, Prussin C, Kirshenbaum AS, Davis TA, et al. Human mast cells produce the CD4+ T lymphocyte chemoattractant factor, IL-16. J Immunol (Baltimore, Md : 1950). 1997;159(6):2904–10.Google Scholar
  41. 41.
    Center DM, Kornfeld H, Cruikshank WW. Interleukin 16 and its function as a CD4 ligand. Immunol Today. 1996;17(10):476–81.CrossRefPubMedGoogle Scholar
  42. 42.
    Atanackovic D, Hildebrandt Y, Templin J, Cao Y, Keller C, Panse J, et al. Role of interleukin 16 in multiple myeloma. J Natl Cancer Inst. 2012;104(13):1005–20. doi: 10.1093/jnci/djs257.CrossRefPubMedGoogle Scholar
  43. 43.
    Koike M, Sekigawa I, Okada M, Matsumoto M, Iida N, Hashimoto H, et al. Relationship between CD4(+)/CD8(+) T cell ratio and T cell activation in multiple myeloma: reference to IL-16. Leuk Res. 2002;26(8):705–11.CrossRefPubMedGoogle Scholar
  44. 44.
    Alexandrakis MG, Passam FH, Kyriakou DS, Christophoridou AV, Perisinakis K, Hatzivasili A, et al. Serum level of interleukin-16 in multiple myeloma patients and its relationship to disease activity. Am J Hematol. 2004;75(2):101–6. doi: 10.1002/ajh.10444.CrossRefPubMedGoogle Scholar
  45. 45.
    Liebrich M, Guo LH, Schluesener HJ, Schwab JM, Dietz K, Will BE, et al. Expression of interleukin-16 by tumor-associated macrophages/activated microglia in high-grade astrocytic brain tumors. Arch Immunol Ther Exp. 2007;55(1):41–7. doi: 10.1007/s00005-007-0003-0.CrossRefGoogle Scholar
  46. 46.
    Yellapa A, Bitterman P, Abramowicz JS, Bahr JM, Sharma S, Basu S, et al. Abstract A64: association of interleukin 16 with early metastasis of ovarian tumors. Clin Cancer Res. 2013;19(19 Supplement):A64-A.CrossRefGoogle Scholar
  47. 47.
    Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J, et al. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res. 2008;14(23):7956–62. doi: 10.1158/1078-0432.ccr-08-1199.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004;119(5):591–602. doi: 10.1016/j.cell.2004.11.022.CrossRefPubMedGoogle Scholar
  49. 49.
    Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70(7):2789–98. doi: 10.1158/0008-5472.can-09-3541.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Xiong X-D, Luo X-P, Cheng J, Liu X, Li E-M, Zeng L-Q. A genetic variant in pre-miR-27a is associated with a reduced cervical cancer risk in southern Chinese women. Gynecol Oncol. 2014;132(2):450–4.CrossRefPubMedGoogle Scholar
  51. 51.
    Ryan BM, Robles AI, McClary AC, Haznadar M, Bowman ED, Pine SR, et al. Identification of a functional SNP in the 3′ UTR of CXCR2 that is associated with reduced risk of lung cancer. Cancer Res. 2015;75(3):566–75.CrossRefPubMedGoogle Scholar
  52. 52.
    Zeng X-F, Li J, Li S-B. A functional polymorphism in IL-1A gene is associated with a reduced risk of gastric cancer. Tumor Biol. 2014;35(1):265–8.CrossRefGoogle Scholar
  53. 53.
    Haque S, Akhter N, Lohani M, Ali A, Mandal R. Matrix metalloproteinase-2-1306 C > T gene polymorphism is associated with reduced risk of cancer: a meta-analysis. Asian Pac J Cancer Prev. 2014;16(3):889–96.CrossRefGoogle Scholar
  54. 54.
    Zaanan A, Dalban C, Emile J-F, Blons H, Fléjou J-F, Goumard C, et al. ERCC1, XRCC1 and GSTP1 single nucleotide polymorphisms and survival of patients with colon cancer receiving oxaliplatin-based adjuvant chemotherapy. J Cancer. 2014;5(6):425.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Beuselinck B, Karadimou A, Lambrechts D, Claes B, Wolter P, Couchy G, et al. VEGFR1 single nucleotide polymorphisms associated with outcome in patients with metastatic renal cell carcinoma treated with sunitinib—a multicentric retrospective analysis. Acta Oncol. 2014;53(1):103–12.CrossRefPubMedGoogle Scholar
  56. 56.
    van der Mijn JC, Mier JW, Broxterman HJ, Verheul HM. Predictive biomarkers in renal cell cancer: insights in drug resistance mechanisms. Drug Resist Updat. 2014;17(4):77–88.CrossRefPubMedGoogle Scholar
  57. 57.
    Leifler KS, Asklid A, Fornander T, Askmalm MS. The RAD51 135G > C polymorphism is related to the effect of adjuvant therapy in early breast cancer. J Cancer Res Clin Oncol. 2015;141(5):797–804.CrossRefGoogle Scholar
  58. 58.
    Bibert S, Roger T, Calandra T, Bochud M, Cerny A, Semmo N, et al. IL28B expression depends on a novel TT/-G polymorphism which improves HCV clearance prediction. J Exp Med. 2013;210(6):1109–16.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang B, Wang A, Xia C, Lin Q, Chen C. A single nucleotide polymorphism in primary-microRNA-146a reduces the expression of mature microRNA-146a in patients with Alzheimer’s disease and is associated with the pathogenesis of Alzheimer’s disease. Mol Med Rep. 2015;12(3):4037–42.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang D, Guo Y, Wrighton S, Cooke G, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11(4):274–86.CrossRefPubMedGoogle Scholar
  61. 61.
    Pang B, Sun SP, Gao L, Zhu RL, Zhang LX, An C, et al. A single nucleotide polymorphism in PIK3CA gene is inversely associated with P53 protein expression in breast cancer. Med Oncol (Northwood, London, England). 2014;31(7):30. doi: 10.1007/s12032-014-0030-8.CrossRefGoogle Scholar
  62. 62.
    He BS, Pan YQ, Xu YF, Zhu C, Qu LL, Wang SK. Polymorphisms in interleukin-1B (IL-1B) and interleukin 1 receptor antagonist (IL-1RN) genes associate with gastric cancer risk in the Chinese population. Dig Dis Sci. 2011;56(7):2017–23. doi: 10.1007/s10620-010-1557-y.CrossRefPubMedGoogle Scholar
  63. 63.
    Pan XF, Yang SJ, Loh M, Xie Y, Wen YY, Tian Z, et al. Interleukin-10 gene promoter polymorphisms and risk of gastric cancer in a Chinese population: single nucleotide and haplotype analyses. Asian Pac J Cancer Prev. 2013;14(4):2577–82.CrossRefPubMedGoogle Scholar
  64. 64.
    Lee KA, Ki CS, Kim HJ, Sohn KM, Kim JW, Kang WK, et al. Novel interleukin 1beta polymorphism increased the risk of gastric cancer in a Korean population. J Gastroenterol. 2004;39(5):429–33. doi: 10.1007/s00535-003-1315-4.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Seyed Mohammad Hossein Kashfi
    • 1
  • Faegheh Behboudi Farahbakhsh
    • 2
  • Ehsan Nazemalhosseini Mojarad
    • 1
  • Kazem Mashayekhi
    • 2
  • Pedram Azimzadeh
    • 2
  • Sara Romani
    • 1
  • Shaghayegh Derakhshani
    • 2
  • Habib Malekpour
    • 1
  • Hamid Asadzadeh Aghdaei
    • 2
  • Mohammad Reza Zali
    • 1
  1. 1.Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations