Advertisement

Tumor Biology

, Volume 37, Issue 2, pp 2105–2117 | Cite as

Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer

  • Linjun Wang
  • Xiaofei Zhi
  • Qun Zhang
  • Song Wei
  • Zheng Li
  • Jianping Zhou
  • Jianguo Jiang
  • Yi Zhu
  • Li Yang
  • Hao Xu
  • Zekuan Xu
Original Article

Abstract

The muscarinic receptor M3 is an acetylcholine receptor that regulates the activity of numerous fundamental central and peripheral nervous system functions. Recent studies have identified the activation of the M3 receptor in several cancers; however, the role of M3 in human gastric cancer (GC) remains largely unknown. In this study, we demonstrated that the M3 receptor was overexpressed in human GC tissues and was correlated with the cancer stage and with lymph node metastasis. In vitro, the M3 receptor enhanced the proliferation induced by acetylcholine in human GC cells, whereas the knockdown of M3 by a small hairpin RNA (shRNA) inhibited cell proliferation. Furthermore, M3 knockdown caused G2/M phase cell cycle arrest and induced apoptosis in human GC cells. In vivo, M3 knockdown suppressed tumorigenesis and promoted apoptosis in GC xenografts. In addition, we also detected the secretion of acetylcholine (ACh) by human GC cells and observed the co-expression of the M3 receptor and choline acetyltransferase (ChAT), the enzyme necessary for acetylcholine synthesis, in human GC tissues and cells. Taken together, our findings support an oncogenic role for the M3 receptor in gastric cancer, suggesting that M3 antagonists may serve as potential adjuvants to GC therapies. Further study of the underlying molecular mechanism could also lead to the identification of novel therapeutic targets for improved treatment of GC.

Keywords

M3 ACh Proliferation Apoptosis Gastric cancer 

Notes

Acknowledgments

This study was funded by the National Natural Science Foundation of China (81272712), the National Natural Science Foundation Project of International Cooperation (NSFC-NIH, 812111519), the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (KYLX_0936).

Conflicts of interest

None

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol. 2009;472:467–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Luebeck EG, Curtius K, Jeon J, Hazelton WD. Impact of tumor progression on cancer incidence curves. Cancer Res. 2013;73:1086–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Ota M, Horiguchi M, Fang V, Shibahara K, Kadota K, Loomis C, et al. Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-beta in gastric tissue. Cancer Res. 2014;74:2642–51.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang Y, Wen M, Kwon Y, Xu Y, Liu Y, Zhang P, et al. CUL4A induces epithelial-mesenchymal transition and promotes cancer metastasis by regulating ZEB1 expression. Cancer Res. 2014;74:520–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, et al. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut. 2015;64:37–48.CrossRefPubMedGoogle Scholar
  7. 7.
    Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998;50:279–90.PubMedGoogle Scholar
  8. 8.
    Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov. 2007;6:721–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature. 2001;410:207–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Poulin B, Butcher A, McWilliams P, Bourgognon JM, Pawlak R, Kong KC, et al. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci U S A. 2010;107:9440–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gautam D, Jeon J, Starost MF, Han SJ, Hamdan FF, Cui Y, et al. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth. Proc Natl Acad Sci U S A. 2009;106:6398–403.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C, et al. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res. 2007;67:3936–44.CrossRefPubMedGoogle Scholar
  13. 13.
    Schmitt JM, Abell E, Wagner A, Davare MA. ERK activation and cell growth require CaM kinases in MCF-7 breast cancer cells. Mol Cell Biochem. 2010;335:155–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Cheng K, Samimi R, Xie G, Shant J, Drachenberg C, Wade M, et al. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am J Physiol Gastrointest Liver Physiol. 2008;295:G591–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Feng YJ, Zhang BY, Yao RY, Lu Y. Muscarinic acetylcholine receptor M3 in proliferation and perineural invasion of cholangiocarcinoma cells. Hepatobiliary Pancreat Dis Int. 2012;11:418–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Shah N, Khurana S, Cheng K, Raufman JP. Muscarinic receptors and ligands in cancer. Am J Physiol Cell Physiol. 2009;296:C221–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, et al. Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology. 2004;145:2498–506.CrossRefPubMedGoogle Scholar
  18. 18.
    Sekhon HS, Proskocil BJ, Clark JA, Spindel ER. Prenatal nicotine exposure increases connective tissue expression in foetal monkey pulmonary vessels. Eur Respir J. 2004;23:906–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Grando SA, Kist DA, Qi M, Dahl MV. Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Investig Dermatol. 1993;101:32–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Mayerhofer A, Kunz L. A non-neuronal cholinergic system of the ovarian follicle. Ann Anat. 2005;187:521–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Pfeil U, Vollerthun R, Kummer W, Lips KS. Expression of the cholinergic gene locus in the rat placenta. Histochem Cell Biol. 2004;122:121–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Spindel ER. Muscarinic receptor agonists and antagonists: Effects on cancer. Handb Exp Pharmacol. 2012;451–68.Google Scholar
  23. 23.
    Gautam D, Jeon J, Li JH, Han SJ, Hamdan FF, Cui Y, et al. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J Recept Signal Transduct Res. 2008;28:93–108.CrossRefPubMedGoogle Scholar
  24. 24.
    Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, et al. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 2010;11:231–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mansfield KJ, Mitchelson FJ, Moore KH, Burcher E. Muscarinic receptor subtypes in the human colon: lack of evidence for atypical subtypes. Eur J Pharmacol. 2003;482:101–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Xu ZP, Yang K, Xu GN, Zhu L, Hou LN, Zhang WH, et al. Role of M3 mAChR in in vivo and in vitro models of LPS-induced inflammatory response. Int Immunopharmacol. 2012;14:320–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP, et al. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res. 2003;63:214–21.PubMedGoogle Scholar
  28. 28.
    Xu R, Shang C, Zhao J, Han Y, Liu J, Chen K, et al. Activation of M3 muscarinic receptor by acetylcholine promotes non-small cell lung cancer cell proliferation and invasion via EGFR/PI3K/AKT pathway. Tumour Biol. 2015.Google Scholar
  29. 29.
    Shen FZ, Zhang BY, Feng YJ, Jia ZX, An B, Liu CC, et al. Current research in perineural invasion of cholangiocarcinoma. J Exp Clin Cancer Res. 2010;29:24.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 2008;68:3573–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S. Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1199–207.CrossRefPubMedGoogle Scholar
  32. 32.
    Leonard A, Cuq P, Magous R, Bali JP. M3-subtype muscarinic receptor that controls intracellular calcium release and inositol phosphate accumulation in gastric parietal cells. Biochem Pharmacol. 1991;42:839–45.CrossRefPubMedGoogle Scholar
  33. 33.
    Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP. Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am J Physiol Gastrointest Liver Physiol. 2005;289:G521–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng K, Zimniak P, Raufman JP. Transactivation of the epidermal growth factor receptor mediates cholinergic agonist-induced proliferation of H508 human colon cancer cells. Cancer Res. 2003;63:6744–50.PubMedGoogle Scholar
  35. 35.
    Frucht H, Jensen RT, Dexter D, Yang WL, Xiao Y. Human colon cancer cell proliferation mediated by the M3 muscarinic cholinergic receptor. Clin Cancer Res. 1999;5:2532–9.PubMedGoogle Scholar
  36. 36.
    Ukegawa JI, Takeuchi Y, Kusayanagi S, Mitamura K. Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells. J Cancer Res Clin Oncol. 2003;129:272–8.PubMedGoogle Scholar
  37. 37.
    Jimenez E, Montiel M. Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J Cell Physiol. 2005;204:678–86.CrossRefPubMedGoogle Scholar
  38. 38.
    Budd DC, McDonald J, Emsley N, Cain K, Tobin AB. The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem. 2003;278:19565–73.CrossRefPubMedGoogle Scholar
  39. 39.
    De Sarno P, Shestopal SA, King TD, Zmijewska A, Song L, Jope RS. Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J Biol Chem. 2003;278:11086–93.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154:1558–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Beckmann J, Lips KS. The non-neuronal cholinergic system in health and disease. Pharmacology. 2013;92:286–302.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Linjun Wang
    • 1
  • Xiaofei Zhi
    • 2
  • Qun Zhang
    • 1
  • Song Wei
    • 1
  • Zheng Li
    • 1
  • Jianping Zhou
    • 3
  • Jianguo Jiang
    • 4
  • Yi Zhu
    • 1
  • Li Yang
    • 1
  • Hao Xu
    • 1
  • Zekuan Xu
    • 1
    • 5
  1. 1.Division of Gastric Surgery, Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of General SurgeryThe Affiliated Hospital of Nantong UniversityNantongPeople’s Republic of China
  3. 3.Department of Gastrointestinal SurgeryThe Affiliated Yixing Hospital of Jiangsu UniversityYixingPeople’s Republic of China
  4. 4.Department of Gastrointestinal SurgeryTaizhou People’s HospitalTaizhouPeople’s Republic of China
  5. 5.Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations