Tumor Biology

, Volume 37, Issue 2, pp 1919–1931 | Cite as

Isocyclopamine, a novel synthetic derivative of cyclopamine, reverts doxorubicin resistance in MCF-7/ADR cells by increasing intracellular doxorubicin accumulation and downregulating breast cancer stem-like cells

  • Ming Liu
  • Weiyi Zhang
  • Wei Tang
  • Yanjuan Wang
  • Xingzeng Zhao
  • Xiangyun Wang
  • Xin Qi
  • Jing Li
Original Article

Abstract

Cyclopamine (CPM) showed promise as a human cancer chemotherapy agent. However, limitations such as stomach acid instability and low solubility impair its clinical application. In this study, we synthesized a novel CPM analogue, isocyclopamine (ICPM), which had comparative bioactivity with CPM and improved stability and solubility. ICPM reversed doxorubicin resistance and had potent synergy with doxorubicin in MCF-7/ADR cells. We further demonstrated that the synergistic mechanism was related to the increased intracellular accumulation of doxorubicin in the cells and the downregulation of the cancer stem-like cells via modulation on both ABCB1 and ABCG2 transporters with independence of Smoothened. The present study identified ICPM as a novel derivative of CPM with better stability and solubility, which provided a useful tool for the biological and medicinal studies, as well as a novel agent for the development of new cancer chemotherapy with improved efficacy.

Keywords

Cyclopamine Isocyclopamine MCF-7/ADR ABCB1 ABCG2 

Notes

Acknowledgments

This work was supported by NSFC-Shandong Joint Fund (No. U1406402), the Natural Science Foundation of China (No. 81373323), the Natural Science Foundation of Shandong Province (No. ZR2012CM005, No. ZR2015HM010), and the Young Talent Project at Ocean University of China (No. 201412007).

Conflict of interest

None

References

  1. 1.
    Faneyte IF, Kristel PMP, Maliepaard M, Scheffer GL, Scheper RJ, Schellens JHM, et al. Expression of the breast cancer resistance protein in breast cancer. Clin Cancer Res. 2002;8(4):1068–74.PubMedGoogle Scholar
  2. 2.
    Vasconcelos FC, Cavalcanti GB, Silva KL, Ed M, Kwee JK, Rumjanek VM, et al. Contrasting features of MDR phenotype in leukemias by using two fluorochromes: implications for clinical practice. Leuk Res. 2007;31(4):445–54. doi: 10.1016/j.leukres.2006.07.016.CrossRefPubMedGoogle Scholar
  3. 3.
    Legrand O, Simonin G, Beauchamp-Nicoud A, Zittoun R, Marie J-P. Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia, vol. 3. 1999.Google Scholar
  4. 4.
    Sotiropoulou PA, Christodoulou MS, Silvani A, Herold-Mende C, Passarella D. Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discov Today. 2014;19(10):1547–62. http://dx.doi.org/10.1016/j.drudis.2014.05.002.CrossRefPubMedGoogle Scholar
  5. 5.
    Mannello F. Understanding breast cancer stem cell heterogeneity: time to move on to a new research paradigm. BMC Med. 2013;11(1):169.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB. Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci. 2011;1215:150–60. doi: 10.1111/j.1749-6632.2010.05852.x.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee ST, Welch KD, Panter KE, Gardner DR, Garrossian M, Chang C-WT. Cyclopamine: from cyclops lambs to cancer treatment. J Agric Food Chem. 2014;62(30):7355–62. doi: 10.1021/jf5005622.CrossRefPubMedGoogle Scholar
  8. 8.
    Tremblay M, McGovern K. Cyclopamine and its derivatives for cancer therapeutics. In: Xie J, editor. Hedgehog signaling activation in human cancer and its clinical implications. New York: Springer; 2011. p. 187–212.CrossRefGoogle Scholar
  9. 9.
    Sims-Mourtada J, Izzo JG, Ajani J, Chao KSC. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene. 2007;26(38):5674–9. http://www.nature.com/onc/journal/v26/n38/suppinfo/1210356s1.html.CrossRefPubMedGoogle Scholar
  10. 10.
    Chai F, Zhou J, Chen C, Xie S, Chen X, Su P, et al. The hedgehog inhibitor cyclopamine antagonizes chemoresistance of breast cancer cells. Onco Targets Ther. 2013;6:1643–7.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Heretsch P, Buttner A, Tzagkaroulaki L, Zahn S, Kirchner B, Giannis A. Exo-cyclopamine—a stable and potent inhibitor of hedgehog signaling. Chem Commun. 2011;47(26):7362–4.CrossRefGoogle Scholar
  12. 12.
    Wilson SR, Strand MF, Krapp A, Rise F, Petersen D, Krauss S. Hedgehog antagonist cyclopamine isomerizes to less potent forms when acidified. J Pharm Biomed Anal. 2010;52(5):707–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Moschner J, Chentsova A, Eilert N, Rovardi I, Heretsch P, Giannis A. Cyclopamine analogs bearing exocyclic methylenes are highly potent and acid-stable inhibitors of hedgehog signaling. Beilstein J Org Chem. 2013;9:2328–35. doi: 10.3762/bjoc.9.267.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.CrossRefPubMedGoogle Scholar
  15. 15.
    Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010;10(2):147–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang M, Wang Y, Zhong J. Side population cells and drug resistance in breast cancer. Mol Med Rep. 2015;30:10.Google Scholar
  17. 17.
    Tsou S-H, Chen T-M, Hsiao H-T, Chen Y-H. A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS ONE. 2015;10(1):e0116747. doi: 10.1371/journal.pone.0116747.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 2012;83(8):1084–103. http://dx.doi.org/10.1016/j.bcp.2012.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Balbuena J, Pachon G, Lopez-Torrents G, Aran JM, Castresana JS, Petriz J. ABCG2 is required to control the sonic hedgehog pathway in side population cells with stem-like properties. Cytometry A. 2011;79A(9):672–83. doi: 10.1002/cyto.a.21103.Google Scholar
  20. 20.
    Xia P. Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther. 2014;9(2):102–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Schroeter A, Marko D. Resveratrol modulates the topoisomerase inhibitory potential of doxorubicin in human colon carcinoma cells. Molecules. 2014;19(12):20054–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Yu L, Wu WKK, Li ZJ, Liu QC, Li HT, Wu YC, et al. Enhancement of doxorubicin cytotoxicity on human esophageal squamous cell carcinoma cells by indomethacin and 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC236) via inhibiting P-Glycoprotein activity. Mol Pharmacol. 2009;75(6):1364–73. doi: 10.1124/mol.108.053546.CrossRefPubMedGoogle Scholar
  23. 23.
    Videira M, Reis RL, Brito MA. Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance. Biochim Biophys Acta. 2014;1846(2):312–25. http://dx.doi.org/10.1016/j.bbcan.2014.07.011.PubMedGoogle Scholar
  24. 24.
    Zeino M, Paulsen MS, Zehl M, Urban E, Kopp B, Efferth T. Identification of new P-glycoprotein inhibitors derived from cardiotonic steroids. Biochem Pharmacol. 2015;93(1):11–24. http://dx.doi.org/10.1016/j.bcp.2014.10.009.CrossRefPubMedGoogle Scholar
  25. 25.
    Singh S, Chitkara D, Mehrazin R, Behrman SW, Wake RW, Mahato RI. Chemoresistance in prostate cancer cells is regulated by miRNAs and hedgehog pathway. PLoS ONE. 2012;7(6):e40021. doi: 10.1371/journal.pone.0040021.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature. 2000;406(6799):1005–9. http://www.nature.com/nature/journal/v406/n6799/suppinfo/4061005a0_S1.html.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang C, Wu H, Katritch V, Han GW, Huang X-P, Liu W, et al. Structure of the human smoothened receptor 7TM bound to an antitumor agent. Nature. 2013;497(7449):338–43. doi: 10.1038/nature12167.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ramaswamy B, Lu Y, Teng K-y, Nuovo G, Li X, Shapiro CL, et al. Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway. Cancer Res. 2012;72(19):5048–59. doi: 10.1158/0008-5472.can-12-1248.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang Y, Laterra J, Pomper MG. Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP and ABCB1/Pgp. Neoplasia (New York, NY). 2009;11(1):96–101.CrossRefGoogle Scholar
  30. 30.
    Balbuena J, Pachon G, Lopez-Torrents G, Fan X, Castresana JS, Petriz J. Abstract 5049: cyclopamine modulates ABCG2 activity in glioblastoma side population cells. Cancer Res. 2011;71(8 Supplement):5049. doi: 10.1158/1538-7445.am2011-5049.CrossRefGoogle Scholar
  31. 31.
    Zhang X, Harrington N, Moraes R, Wu M-F, Hilsenbeck S, Lewis M. Cyclopamine inhibition of human breast cancer cell growth independent of smoothened (Smo). Breast Cancer Res Treat. 2009;115(3):505–21. doi: 10.1007/s10549-008-0093-3.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ming Liu
    • 1
  • Weiyi Zhang
    • 1
  • Wei Tang
    • 1
  • Yanjuan Wang
    • 1
  • Xingzeng Zhao
    • 2
  • Xiangyun Wang
    • 3
  • Xin Qi
    • 1
  • Jing Li
    • 1
  1. 1.Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of ChinaQingdaoChina
  2. 2.Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-sen)NanjingChina
  3. 3.Nanjing Spring & Autumn Biological Engineering Co., Ltd, ChinaNanjingChina

Personalised recommendations