Tumor Biology

, Volume 37, Issue 2, pp 2709–2719 | Cite as

Fangchinoline suppresses the growth and invasion of human glioblastoma cells by inhibiting the kinase activity of Akt and Akt-mediated signaling cascades

  • Bingyu Guo
  • Peng Xie
  • Jingyuan Su
  • Tingting Zhang
  • Xiaoming Li
  • Guobiao Liang
Original Article


Glioblastoma multiforme (GBM) is one of the most palindromic and malignant central nervous system neoplasms, and the current treatment is not effectual for GBM. Research of specific medicine for GBM is significant. Fangchinoline possesses a wide range of pharmacological activities and attracts more attentions due to its anti-tumor effects. In this study, two WHO grade IV human GBM cell lines (U87 MG and U118 MG) were exposed to fangchinoline, and we found that fangchinoline specifically inhibits the kinase activity of Akt and markedly suppresses the phosphorylation of Thr308 and Ser473 of Akt in human GBM cells. We also observed that fangchinoline inhibits tumor cell proliferation and invasiveness and induces apoptosis through suppressing the Akt-mediated signaling cascades, including Akt/p21, Akt/Bad, and Akt/matrix metalloproteinases (MMPs). These data demonstrated that fangchinoline exerts its anti-tumor effects in human glioblastoma cells, at least partly by inhibiting the kinase activity of Akt and suppressing Akt-mediated signaling cascades.


Fangchinoline Glioblastoma multiforme Akt Phosphorylation Signaling cascade 


  1. 1.
    Ahmed KA, Chinnaiyan P. Applying metabolomics to understand the aggressive phenotype and identify novel therapeutic targets in glioblastoma. Metabolites. 2014;4:740–50.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Agrawal NS, Miller R, Jr., Lal R, Mahanti H, Dixon-Mah YN, DeCandio ML, et al. Current studies of immunotherapy on glioblastoma. J Neurol Neurosurg. 2014;5:1(1).Google Scholar
  3. 3.
    Kazlauskas A, Cooper JA. Phosphorylation of the PDGF receptor beta subunit creates a tight binding site for phosphatidylinositol 3 kinase. EMBO J. 1990;9:3279–86.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Chiang EP, Tsai SY, Kuo YH, Pai MH, Chiu HL, Rodriguez RL, et al. Caffeic acid derivatives inhibit the growth of colon cancer: involvement of the PI3-K/Akt and AMPK signaling pathways. PloS one. 2014;9:e99631.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gustin JP, Karakas B, Weiss MB, Abukhdeir AM, Lauring J, Garay JP, et al. Knockin of mutant pik3ca activates multiple oncogenic pathways. Proc Natl Acad Sci U S A. 2009;106:2835–40.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A. 2005;102:802–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the pik3ca gene in human cancers. Science. 2004;304:554.CrossRefPubMedGoogle Scholar
  8. 8.
    Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6:184–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13:140–56.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McDowell KA, Riggins GJ, Gallia GL. Targeting the Akt pathway in glioblastoma. Curr Pharm Des. 2011;17:2411–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Suzuki Y, Shirai K, Oka K, Mobaraki A, Yoshida Y, Noda SE, et al. Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J Radiat Res. 2010;51:343–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Chan CH, Jo U, Kohrman A, Rezaeian AH, Chou PC, Logothetis C, et al. Posttranslational regulation of Akt in human cancer. Cell Bioscience. 2014;4:59.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang Y, Chen J, Wang L, Huang Y, Leng Y, Wang G. Fangchinoline induces G0/G1 arrest by modulating the expression of CDKN1A and CCND2 in K562 human chronic myelogenous leukemia cells. Exp Ther Med. 2013;5:1105–12.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang CD, Yuan CF, Bu YQ, Wu XM, Wan JY, Zhang L, et al. Fangchinoline inhibits cell proliferation via Akt/gsk-3beta/cyclin d1 signaling and induces apoptosis in MDA-MB-231 breast cancer cells. Asian Pac J Cancer Prev. 2014;15:769–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang N, Pan W, Zhu M, Zhang M, Hao X, Liang G, et al. Fangchinoline induces autophagic cell death via p53/sestrin2/AMPK signalling in human hepatocellular carcinoma cells. Br J Pharmacol. 2011;164:731–42.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang CD, Huang JG, Gao X, Li Y, Zhou SY, Yan X, et al. Fangchinoline induced G1/S arrest by modulating expression of p27, PCNA, and cyclin D in human prostate carcinoma cancer PC3 cells and tumor xenograft. Biosci Biotechnol Biochem. 2010;74:488–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Guo B, Su J, Zhang T, Wang K, Li X. Fangchinoline as a kinase inhibitor targets FAK and suppresses FAK-mediated signaling pathway in A549. J Drug Target. 2015;23:266–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang YH, Fang LH, Ku BS. Fangchinoline inhibits rat aortic vascular smooth muscle cell proliferation and cell cycle progression through inhibition of ERK1/2 activation and c-fos expression. Biochem Pharmacol. 2003;66:1853–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Meng LH, Zhang H, Hayward L, Takemura H, Shao RG, Pommier Y. Tetrandrine induces early G1 arrest in human colon carcinoma cells by down-regulating the activity and inducing the degradation of G1-S-specific cyclin-dependent kinases and by inducing p53 and p21Cip1. Cancer Res. 2004;64:9086–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Sun X, Xu R, Deng Y, Cheng H, Ma J, Ji J, et al. Effects of tetrandrine on apoptosis and radiosensitivity of nasopharyngeal carcinoma cell line CNE. Acta Biochim Biophys Sin. 2007;39:869–78.CrossRefPubMedGoogle Scholar
  21. 21.
    Xing Z, Zhang Y, Zhang X, Yang Y, Ma Y, Pang D. Fangchinoline induces G1 arrest in breast cancer cells through cell-cycle regulation. Phytother Res. 2013;27:1790–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Xing ZB, Yao L, Zhang GQ, Zhang XY, Zhang YX, Pang D. Fangchinoline inhibits breast adenocarcinoma proliferation by inducing apoptosis. Chem Pharm Bull. 2011;59:1476–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Baki A, Bielik A, Molnar L, Szendrei G, Keseru GM. A high throughput luminescent assay for glycogen synthase kinase-3beta inhibitors. Assay Drug Dev Technol. 2007;5:75–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Lino MM, Merlo A. Pi3kinase signaling in glioblastoma. J Neurooncol. 2011;103:417–27.CrossRefPubMedGoogle Scholar
  25. 25.
    Tian F, Ding D, Li D. Fangchinoline targets PI3K and suppresses PI3K/Akt signaling pathway in SGC7901 cells. Int J Oncol. 2015;46:2355–63.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Chautard E, Ouedraogo ZG, Biau J, Verrelle P. Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness. J Neurooncol. 2014;117:205–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 2001;61:6674–8.PubMedGoogle Scholar
  28. 28.
    Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14:381–95.CrossRefPubMedGoogle Scholar
  29. 29.
    Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Bingyu Guo
    • 1
  • Peng Xie
    • 1
  • Jingyuan Su
    • 1
  • Tingting Zhang
    • 1
  • Xiaoming Li
    • 1
  • Guobiao Liang
    • 1
  1. 1.Institute of Neurological Medicine, General Hospital of Shenyang Military CommandShenyangChina

Personalised recommendations