Tumor Biology

, Volume 37, Issue 2, pp 2405–2414 | Cite as

A new insight into cancer stem cell markers: Could local and circulating cancer stem cell markers correlate in colorectal cancer?

  • Alireza Mirzaei
  • Gholamreza Tavoosidana
  • Afshin Abdi Rad
  • Farhad Rezaei
  • Masoumeh Tavakoli-Yaraki
  • Azade Amini Kadijani
  • Ehsan Khalili
  • Zahra Madjd
Original Article

Abstract

Cancer stem cell (CSC) markers could serve as potential prognostic procedure. This study is aimed to investigate the local expression of doublecortin-like kinase 1 (DCLK1) and Lgr5 in colorectal cancer tissues (CRC) at both protein and messenger RNA (mRNA) level, followed by providing a comparison of the local and circulating expression pattern of these markers, based on our present and previous study. The mRNA expression level of DCLK1 and Lgr5 was evaluated using comparative real-time PCR method applying 58 fresh tumor tissues and their correspondent normal margins. Immunohistochemistry was applied to analyze the protein expression level of DCLK1 and Lgr5 in paraffin-embedded CRC tissues. The correlation of DCLK1 and Lgr5 expression pattern with clinicopathological characteristics was assessed. A higher mRNA expression level of DCLK1 (3.28-fold change, p < 0.001) and Lgr5 (2.29-fold change, p < 0.001) was observed in CRC fresh tissues compared to the normal adjacent margins, and the expression level was higher in patients with higher grade and stages of disease and patients who underwent neoadjuvant chemoradiotherapy (CRT). The protein expression level of DCLK1 and Lgr5 was also increased significantly in tumor tissues compared to normal colon tissues which were positively correlated to tumor stage and grade and neoadjuvant CRT. Taken together, the results of protein analysis were in accordance with mRNA assessment. The local expression pattern of DCLK1 and Lgr5 was also in accordance with their expression level in circulation. However, some minor inconsistencies were observed which may be attributed to several factors including the possible effect of CRT on CSC reprogramming.

Keywords

Colorectal cancer DCLK1 Lgr5 Local cancer stem cell Circulating cancer stem cell 

Notes

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.”

References

  1. 1.
    Allegra A, Alonci A, Penna G, Innao V, Gerace D, Rotondo F, et al. The cancer stem cell hypothesis: a guide to potential molecular targets. Cancer Investig. 2014;32(9):470–95.CrossRefGoogle Scholar
  2. 2.
    Foreman KE, Rizzo P, Osipo C, Miele L. The cancer stem cell hypothesis. Stem Cells and Cancer: Springer; 2009. p. 3–14.CrossRefGoogle Scholar
  3. 3.
    Gil J, Stembalska A, Pesz KA, Sąsiadek MM. Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet. 2008;49(2):193–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Pantic I. Cancer stem cell hypotheses: impact on modern molecular physiology and pharmacology research. J Biosci. 2011;36(5):957–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Yoo M-H, Hatfield DL. The cancer stem cell theory: is it correct? Mol Cells. 2008;26(5):514.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Lab Investig. 2006;86(12):1203–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14(1):43–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1(4):389–402.CrossRefPubMedGoogle Scholar
  12. 12.
    Karsten U, Goletz S. What makes cancer stem cell markers different? Springerplus. 2013;2(1):301.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Natarajan TG, FitzGerald KT. Markers in normal and cancer stem cells. Cancer Biomarkers. 2007;3(4):211–31.CrossRefPubMedGoogle Scholar
  14. 14.
    Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 2012;22(3):457–72.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8(5):511–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, Medema JP. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells. 2012;30(11):2378–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Bellows CF, Gagliardi G. DCLK1 expression in gastrointestinal stem cells and neoplasia. J Cancer Therapeutics Res. 2012;1(1):12.CrossRefGoogle Scholar
  20. 20.
    Li L, Bellows CF. Doublecortin-like kinase 1 exhibits cancer stem cell-like characteristics in a human colon cancer cell line. Chin J Cancer Res. 2013;25(2):134.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Sarkar S, O’Connell M, Kantara C, Singh P. A sub-set of DCLK1+ ve colon cancer stem cells (CSCs) survive curcumin induced autophagy, while co-treatment with curcumin + DCLK1-siRNA eliminates CSCs: Role of long and short isofoms of DCLK1. Cancer Res. 2014;74(19 Supplement):3903.CrossRefGoogle Scholar
  22. 22.
    Mirzaei A, Tavoosidana G, Modarressi MH, Rad AA, Fazeli MS, Shirkoohi R, et al. Upregulation of circulating cancer stem cell marker, DCLK1 but not Lgr5, in chemoradiotherapy-treated colorectal cancer patients. Tumor Biol. 2015;36(6):1–10.CrossRefGoogle Scholar
  23. 23.
    Valladares-Ayerbes M, Blanco-Calvo M, Reboredo M, Lorenzo-Patiño MJ, Iglesias-Díaz P, Haz M, et al. Evaluation of the adenocarcinoma-associated gene AGR2 and the intestinal stem cell marker LGR5 as biomarkers in colorectal cancer. Int J Mol Sci. 2012;13(4):4367–87.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45(1):98–103.CrossRefPubMedGoogle Scholar
  25. 25.
    Spiessl B, Beahrs OH, Hermanek P, Hutter R, Scheibe O, Sobin L, et al. TNM atlas: illustrated guide to the TNM/pTNM-classification of malignant tumours: Springer Science & Business Media; 2013.Google Scholar
  26. 26.
    Gunderson LL, Haddock MG, Schild SE. Rectal cancer: preoperative versus postoperative irradiation as a component of adjuvant treatment. Semin Radiat Oncol. 2003;13(4):419–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30(16):1926–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao S, Fernald RD. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol. 2005;12(8):1047–64.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Madjd Z, Akbari ME, Zarnani AH, Khayamzadeh M, Kalantari E, Mojtabavi N. Expression of EMSY, a novel BRCA2-link protein, is associated with lymph node metastasis and increased tumor size in breast carcinomas. Asian Pac J Cancer Prev. 2014;15(4):1783–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Mohsenzadegan M, Madjd Z, Asgari M, Abolhasani M, Shekarabi M, Taeb J, et al. Reduced expression of NGEP is associated with high-grade prostate cancers: a tissue microarray analysis. Cancer Immunol Immunother. 2013;62(10):1609–18.CrossRefPubMedGoogle Scholar
  32. 32.
    Sotoudeh K, Hashemi F, Madjd Z, Sadeghipour A, Molanaei S, Kalantary E. The clinicopathologic association of c-MET overexpression in Iranian gastric carcinomas: an immunohistochemical study of tissue microarrays. Diagn Pathol. 2012;7:57.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Detre S, Jotti GS, Dowsett M. A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol. 1995;48(9):876–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337(6095):730–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Gagliardi G, Goswami M, Passera R, Bellows CF. DCLK1 immunoreactivity in colorectal neoplasia. Clin Exp Gastroenterol. 2012;5:35.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Saqui-Salces M, Keeley TM, Grosse AS, Qiao XT, El-Zaatari M, Gumucio DL, et al. Gastric tuft cells express DCLK1 and are expanded in hyperplasia. Histochem Cell Biol. 2011;136(2):191–204.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Takeda K, Kinoshita I, Shimizu Y, Matsuno Y, Shichinohe T, Dosaka-Akita H. Expression of LGR5, an intestinal stem cell marker, during each stage of colorectal tumorigenesis. Anticancer Res. 2011;31(1):263–70.PubMedGoogle Scholar
  38. 38.
    Wu X-S, Xi H-Q, Chen L. Lgr5 is a potential marker of colorectal carcinoma stem cells that correlates with patient survival. World J Surg Oncol. 2012;10(1):244.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meng Q, Yu J, Kang W, Ma Z, Zhou W, Li J, et al. Expression of doublecortin-like kinase 1 in human gastric cancer and its correlation with prognosis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2013;35(6):639–44.PubMedGoogle Scholar
  40. 40.
    Chen Q, Zhang X, Li W-M, Ji Y-Q, Cao H-Z, Zheng P. Prognostic value of LGR5 in colorectal cancer: a meta-analysis. PLoS One. 2014;9(9):e107013.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    dos Santos RV, da Silva LM. A possible explanation for the variable frequencies of cancer stem cells in tumors. PLoS One. 2013;8(8):e69131.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y, et al. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin. 2008;40(5):426–36.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen G, Gharib TG, Huang C-C, Taylor JM, Misek DE, Kardia SL, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002;1(4):304–13.CrossRefPubMedGoogle Scholar
  44. 44.
    Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2010;1805(1):105–17.CrossRefGoogle Scholar
  45. 45.
    Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20(5):515–24.CrossRefPubMedGoogle Scholar
  46. 46.
    Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet. 2010;70:87–99.PubMedGoogle Scholar
  47. 47.
    Hamilton G, Olszewski U. Chemotherapy-induced enrichment of cancer stem cells in lung cancer. Journal of Bioanalysis & Biomedicine. 2013; doi:  10.4172/1948-593X.S9-003.
  48. 48.
    Dylla SJ, Beviglia L, Park I-K, Chartier C, Raval J, Ngan L, et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One. 2008;3(6):e2428.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang L, Huang X, Zheng X, Wang X, Li S, Zhang L, et al. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy. Int J Biol Sci. 2013;9(5):472.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang H, Chang W, Li X, Zhang N, Kong J, Wang Y. Liver cancer stem cells are selectively enriched by low-dose cisplatin. Braz J Med Biol Res. 2014;47(6):478–82.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Denisov EV, Litviakov NV, Zavyalova MV, Perelmuter VM, Vtorushin SV, Tsyganov MM, et al. Intratumoral morphological heterogeneity of breast cancer: neoadjuvant chemotherapy efficiency and multidrug resistance gene expression. Scientific Reports. 2014;14(4):4709.Google Scholar
  52. 52.
    Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol. 2007;14(12):3629–37.CrossRefPubMedGoogle Scholar
  53. 53.
    Yang G, Lu X, Fu H, Jin L, Yao L, Lu Z. Chemotherapy not only enriches but also induces cancer stem cells. Bioscience Hypotheses. 2009;2(6):393–5.CrossRefGoogle Scholar
  54. 54.
    Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncology. 2012;6(6):620–36.CrossRefGoogle Scholar
  55. 55.
    Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14(1):29–43.CrossRefPubMedGoogle Scholar
  56. 56.
    Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.CrossRefPubMedGoogle Scholar
  58. 58.
    Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell. 2014;14(3):306–21.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Alireza Mirzaei
    • 1
  • Gholamreza Tavoosidana
    • 1
  • Afshin Abdi Rad
    • 2
  • Farhad Rezaei
    • 3
  • Masoumeh Tavakoli-Yaraki
    • 4
  • Azade Amini Kadijani
    • 5
  • Ehsan Khalili
    • 6
  • Zahra Madjd
    • 7
    • 8
  1. 1.Department of Molecular Medicine, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  2. 2.Surgical Pathology Department, Cancer InstituteTehran University of Medical SciencesTehranIran
  3. 3.Department of Virology, Faculty of Public HealthTehran University of Medical SciencesTehranIran
  4. 4.Department of Biochemistry, Faculty of MedicineIran University of Medical SciencesTehranIran
  5. 5.Department of Biotechnology, Faculty of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
  6. 6.Department of Clinical Biochemistry, Faculty of MedicineTehran University of Medical SciencesTehranIran
  7. 7.Department of Molecular Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
  8. 8.Oncopathology Research CenterIran University of Medical SciencesTehranIran

Personalised recommendations