Advertisement

Tumor Biology

, Volume 37, Issue 2, pp 1871–1877 | Cite as

Prognostic values of Notch receptors in breast cancer

  • Junming Xu
  • Fangbin Song
  • Tao Jin
  • Jun Qin
  • Junyi Wu
  • Min Wang
  • Ye Wang
  • Jun Liu
Original Article

Abstract

Notch receptors are frequently deregulated in several human malignancies including human breast cancer. Activation of Notch has been reported to cause mammary carcinomas in mice. However, the prognostic value of individual Notch receptors in breast cancer (BC) patients remains elusive. In the current study, we investigated the prognostic value of Notch receptors in human BC patients. More specifically, we investigated the prognostic value of four Notch receptors in breast cancer patients through “the Kaplan-Meier plotter” (KM plotter) database, in which updated gene expression data and survival information are from a total of 3554 breast cancer patients. Our results showed that Notch1 messenger RNA (mRNA) high expression was correlated to worsen overall survival (OS) in PgR-negative BC patients. Notch2, Notch3, and Notch4 mRNA high expressions were found to be correlated to better OS for all breast cancer patients. Notch2 was also found to be correlated to better OS in lymph node-negative breast cancer patients and HER2-positive breast cancer patients. These results will be useful for better understanding of the heterogeneity and complexity in the molecular biology of breast cancer and for developing tools to more accurately predict their prognosis and design their customized treatment strategies.

Keywords

Estrogen receptor (ER) Notch receptor Prognosis KM plotter Hazardous ratio (HR) 

Notes

Acknowledgments

This work is supported by the scientific research project of Shanghai Science and Technology Committee (14411950205, 15411967200).

Conflicts of interest

None

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274:113–26.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Coleman RE, Gregory W, Marshall H, Wilson C, Holen I. The metastatic microenvironment of breast cancer: clinical implications. Breast. 2013;22 Suppl 2:S50–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Korkaya H, Wicha MS. HER-2, notch, and breast cancer stem cells: targeting an axis of evil. Clin Cancer Res. 2009;15:1845–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 2010;1806(2):258–67.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lewis J. Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol. 1998;9:583–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Simpson P. Developmental genetics. The Notch connection. Nature. 1995;375:736–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66:1631–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137:216–33.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Miele L. Notch signaling. Clin Cancer Res. 2006;12:1074–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Miele L, Miao H, Nickoloff BJ. NOTCH signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets. 2006;6:313–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Callahan R, Raafat A. Notch signaling in mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia. 2001;6:23–36.CrossRefPubMedGoogle Scholar
  13. 13.
    Dievart A, Beaulieu N, Jolicoeur P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene. 1999;18:5973–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, et al. Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol. 2004;165:695–705.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pece S, Serresi M, Santolini E, Capra M, Hulleman E, et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol. 2004;167:215–21.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLos One. 2013;8:e82241.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gyorffy B, Lanczky A, Szallasi Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer. 2012;19:197–208.CrossRefPubMedGoogle Scholar
  19. 19.
    Gyorffy B, Benke Z, Lanczky A, Balazs B, Szallasi Z, et al. RecurrenceOnline: an online analysis tool to determine breast cancer recurrence and hormone receptor status using microarray data. Breast Cancer Res Treat. 2012;132:1025–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu M, Wang G, Gomez-Fernandez CR, Guo S. GREB1 functions as a growth promoter and is modulated by IL6/STAT3 in breast cancer. PLos One. 2012;7:e46410.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tilghman SL, Townley I, Zhong Q, Carriere PP, Zou J, et al. Proteomic signatures of acquired letrozole resistance in breast cancer: suppressed estrogen signaling and increased cell motility and invasiveness. Mol Cell Proteomics. 2013;12:2440–55.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, et al. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Breast Cancer Res. 2012;14:R45.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Maciejczyk A, Szelachowska J, Czapiga B, Matkowski R, Halon A, et al. Elevated BUBR1 expression is associated with poor survival in early breast cancer patients: 15-year follow-up analysis. J Histochem Cytochem. 2013;61:330–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Maciejczyk A, Lacko A, Ekiert M, Jagoda E, Wysocka T, et al. Elevated nuclear S100P expression is associated with poor survival in early breast cancer patients. Histol Histopathol. 2013;28:513–24.PubMedGoogle Scholar
  25. 25.
    Maciejczyk A, Jagoda E, Wysocka T, Matkowski R, Gyorffy B, et al. ABCC2 (MRP2, cMOAT) localized in the nuclear envelope of breast carcinoma cells correlates with poor clinical outcome. Pathol Oncol Res. 2012;18:331–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Adam MA. New prognostic factors in breast cancer. Adv Clin Exp Med. 2013;22:5–15.Google Scholar
  27. 27.
    Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66:1517–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 1996;10:1930–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Ling H, Sylvestre JR, Jolicoeur P. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene. 2010;29(32):4543–54.CrossRefPubMedGoogle Scholar
  30. 30.
    Parr C, Watkins G, Jiang WG. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med. 2004;14:779–86.PubMedGoogle Scholar
  31. 31.
    Raouf A, Zhao Y, To K, Stingl J, Delaney A, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3:109–18.CrossRefPubMedGoogle Scholar
  32. 32.
    Hua BL, Fu XG, Hu WH, Yin L, Kang XL, et al. Notch1 mRNA and protein expression in human breast cancer and normal mammary gland tissues. Zhonghua Bing Li Xue Za Zhi. 2009;38:806–9.PubMedGoogle Scholar
  33. 33.
    Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta. 2011;1815:197–213.PubMedGoogle Scholar
  34. 34.
    O’Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ, et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am J Pathol. 2007;171:1023–36.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, et al. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 2006;168:973–90.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yamaguchi N, Oyama T, Ito E, Satoh H, Azuma S, et al. NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res. 2008;68:1881–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, et al. Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol. 2010;177(3):1459–69.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 1996;56:1775–85.PubMedGoogle Scholar
  39. 39.
    Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 1992;6:345–55.CrossRefPubMedGoogle Scholar
  40. 40.
    Imatani A, Callahan R. Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene. 2000;19:223–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Soriano JV, Uyttendaele H, Kitajewski J, Montesano R. Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int J Cancer. 2000;86:652–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Soares R, Balogh G, Guo S, Gartner F, Russo J, et al. Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol. 2004;18:2333–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Calaf GM, Roy D. Cell adhesion proteins altered by 17beta estradiol and parathion in breast epithelial cells. Oncol Rep. 2008;19:165–9.PubMedGoogle Scholar
  44. 44.
    Clarke CA, Glaser SL, Uratsu CS, Selby JV, Kushi LH, et al. Recent declines in hormone therapy utilization and breast cancer incidence: clinical and population-based evidence. J Clin Oncol. 2006;24:e49–50.CrossRefPubMedGoogle Scholar
  45. 45.
    Lee S, Kolonel L, Wilkens L, Wan P, Henderson B, et al. Postmenopausal hormone therapy and breast cancer risk: the Multiethnic Cohort. Int J Cancer. 2006;118:1285–91.CrossRefPubMedGoogle Scholar
  46. 46.
    Obr AE, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol. 2012;357:4–17.CrossRefPubMedGoogle Scholar
  47. 47.
    Hilton HN, Clarke CL. Impact of progesterone on stem/progenitor cells in the human breast. J Mammary Gland Biol Neoplasia. 2015;8:8.Google Scholar
  48. 48.
    Vares G, Sai S, Wang B, Fujimori A, Nenoi M, et al. Progesterone generates cancer stem cells through membrane progesterone receptor-triggered signaling in basal-like human mammary cells. Cancer Lett. 2015;362:167–73.CrossRefPubMedGoogle Scholar
  49. 49.
    Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–75.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tzahar E, Yarden Y. The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim Biophys Acta. 1998;1377:M25–37.PubMedGoogle Scholar
  51. 51.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.CrossRefPubMedGoogle Scholar
  52. 52.
    Chen Y, Fischer WH, Gill GN. Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem. 1997;272:14110–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, et al. Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res. 2009;15:2010–21.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Junming Xu
    • 1
  • Fangbin Song
    • 1
  • Tao Jin
    • 1
  • Jun Qin
    • 1
  • Junyi Wu
    • 1
  • Min Wang
    • 1
  • Ye Wang
    • 1
  • Jun Liu
    • 1
  1. 1.Department of General Surgery, Shanghai First People’s HospitalShanghai Jiaotong UniversityShanghaiPeople’s Republic of China

Personalised recommendations