Tumor Biology

, Volume 37, Issue 12, pp 15559–15566 | Cite as

RETRACTED ARTICLE: Effects of radiotherapy on nasopharyngeal carcinoma cell invasiveness

  • Zheng Peng
  • Tiancai Xu
  • Xiaofang Liao
  • Huijuan He
  • Wansu Xu
Original Article


Radiotherapy is widely used in the treatment of nasopharyngeal carcinoma (NPC), whereas its effects on the NPC growth, survival, and metastases have not been completely evaluated. Here, we compared the detected metastatic NPC tissues after radiotherapy (m-NPC) to the resected primary NPC tissues prior to radiotherapy (p-NPC). We detected higher levels of Snail2 protein, but not mRNA in m-NPC, compared to p-NPC. In vitro, a modest irradiation on NPC cells resulted in significant cell death, but increased Snail2 protein, but mRNA levels in the surviving NPC cells. Bioinformatics analyses showed that miR-613, which was significantly decreased in NPC cells after irradiation, targeted the 3′-UTR of Snail2 mRNA to inhibit its translation. Moreover, miR-613 overexpression inhibited Snail2-mediated cell invasiveness, while miR-613 depletion increased Snail2-mediated cell invasiveness in NPC cells. Finally, we detected significantly lower levels of miR-613 in m-NPC, compared to p-NPC. Together our data suggest that although radiotherapy induced NPC cell death, it may increase Snail2-mediated NPC cell invasiveness through downregulating miR-613.


Nasopharyngeal carcinoma (NPC) Radiotherapy Snail2 miR-613 


Conflict of interest



  1. 1.
    Zhang L, Yang L, Li JJ, Sun L. Potential use of nucleic acid-based agents in the sensitization of nasopharyngeal carcinoma to radiotherapy. Cancer Lett. 2012;323:1–10.CrossRefPubMedGoogle Scholar
  2. 2.
    King AD, Ahuja AT, Yeung DK, Wong JK, Lee YY, Lam WW, et al. Delayed complications of radiotherapy treatment for nasopharyngeal carcinoma: imaging findings. Clin Radiol. 2007;62:195–203.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee AW. Contribution of radiotherapy to function preservation and cancer outcome in primary treatment of nasopharyngeal carcinoma. World J Surg. 2003;27:838–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang T, Sun Q, Liu T, Chen J, Du S, Ren C, et al. Mir-451 increases radiosensitivity of nasopharyngeal carcinoma cells by targeting ras-related protein 14 (rab14). Tumour Biol. 2014;35:12593–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Win KT, Lee SW, Huang HY, Lin LC, Lin CY, Hsing CH, et al. Nicotinamide n-methyltransferase overexpression is associated with akt phosphorylation and indicates worse prognosis in patients with nasopharyngeal carcinoma. Tumour Biol. 2013;34:3923–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Kao YC, Lee SW, Lin LC, Chen LT, Hsing CH, Hsu HP, et al. Fatty acid synthase overexpression confers an independent prognosticator and associates with irradiation resistance in nasopharyngeal carcinoma. Tumour Biol. 2013;34:759–68.CrossRefPubMedGoogle Scholar
  7. 7.
    Li W, Jiang G, Zhou J, Wang H, Gong Z, Zhang Z, et al. Down-regulation of mir-140 induces emt and promotes invasion by targeting slug in esophageal cancer. Cell Physiol Biochem. 2014;34:1466–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Qiu YH, Wei YP, Shen NJ, Wang ZC, Kan T, Yu WL, et al. Mir-204 inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells. Cell Physiol Biochem. 2013;32:1331–41.CrossRefPubMedGoogle Scholar
  9. 9.
    Niu H, Wu B, Jiang H, Li H, Zhang Y, Peng Y, et al. Mechanisms of rhogdi2 mediated lung cancer epithelial–mesenchymal transition suppression. Cell Physiol Biochem. 2014;34:2007–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Deng X, Wu B, Xiao K, Kang J, Xie J, Zhang X, et al. Mir-146b-5p promotes metastasis and induces epithelial–mesenchymal transition in thyroid cancer by targeting znrf3. Cell Physiol Biochem. 2015;35:71–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Guo J, Xia N, Yang L, Zhou S, Zhang Q, Qiao Y, et al. Gsk-3beta and vitamin d receptor are involved in beta-catenin and snail signaling in high glucose-induced epithelial–mesenchymal transition of mouse podocytes. Cell Physiol Biochem. 2014;33:1087–96.CrossRefPubMedGoogle Scholar
  12. 12.
    Teng Y, Zhao L, Zhang Y, Chen W, Li X. Id-1, a protein repressed by mir-29b, facilitates the tgfbeta1-induced epithelial–mesenchymal transition in human ovarian cancer cells. Cell Physiol Biochem. 2014;33:717–30.CrossRefPubMedGoogle Scholar
  13. 13.
    Yang T, Chen M, Sun T. Simvastatin attenuates tgf-beta1-induced epithelial–mesenchymal transition in human alveolar epithelial cells. Cell Physiol Biochem. 2013;31:863–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Di Leva G, Croce CM. miRNA profiling of cancer. Curr Opin Genet Dev. 2013;23:3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Mei Q, Li F, Quan H, Liu Y, Xu H. Busulfan inhibits growth of human osteosarcoma through mir-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014;105:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits egfr-signaling-dependent mmp9 activation via suppressing akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu G, Jiang C, Li D, Wang R, Wang W. Mirna-34a inhibits egfr-signaling-dependent mmp7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Qi X, Li J, Zhou C, Lv C, Tian M. Mir-142-3p suppresses socs6 expression and promotes cell proliferation in nasopharyngeal carcinoma. Cell Physiol Biochem. 2015;36:1743–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Xie M, Yi X, Wang R, Wang L, He G, Zhu M, et al. 14-Thienyl methylene matrine (yyj18), the derivative from matrine, induces apoptosis of human nasopharyngeal carcinoma cells by targeting mapk and pi3k/akt pathways in vitro. Cell Physiol Biochem. 2014;33:1475–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang X, Ni W, Lei K. Mir-200b suppresses cell growth, migration and invasion by targeting notch1 in nasopharyngeal carcinoma. Cell Physiol Biochem. 2013;32:1288–98.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang SX, Qiu QH, Chen WB, Liang CH, Huang B. Celecoxib enhances radiosensitivity via induction of g(2)-m phase arrest and apoptosis in nasopharyngeal carcinoma. Cell Physiol Biochem. 2014;33:1484–97.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao R, Feng J, He G. Mir-613 regulates cholesterol efflux by targeting lxralpha and abca1 in ppargamma activated thp-1 macrophages. Biochem Biophys Res Commun. 2014;448:329–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Sacco J, Adeli K. MicroRNAs: emerging roles in lipid and lipoprotein metabolism. Curr Opin Lipidol. 2012;23:220–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhong D, Zhang Y, Zeng YJ, Gao M, Wu GZ, Hu CJ, et al. Microrna-613 represses lipogenesis in hepg2 cells by downregulating lxralpha. Lipids Health Dis. 2013;12:32.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ou Z, Wada T, Gramignoli R, Li S, Strom SC, Huang M, et al. MicroRNA hsa-mir-613 targets the human lxralpha gene and mediates a feedback loop of lxralpha autoregulation. Mol Endocrinol. 2011;25:584–96.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang Z, Yuan Z, Fan Y, Deng X, Zheng Q. Integrated analyses of microRNA and mRNA expression profiles in aggressive papillary thyroid carcinoma. Mol Med Rep. 2013;8:1353–8.PubMedGoogle Scholar
  28. 28.
    Establishment of an epitheloid cell line and a fusiform cell line from a patient with nasopharyngeal carcinoma. Sci Sin 1978;21:127–134.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Zheng Peng
    • 1
  • Tiancai Xu
    • 1
  • Xiaofang Liao
    • 1
  • Huijuan He
    • 1
  • Wansu Xu
    • 1
  1. 1.Department of Radiation OncologyQuzhou People HospitalQuzhouChina

Personalised recommendations