Tumor Biology

, Volume 37, Issue 2, pp 1797–1801 | Cite as

In situ dendritic cell vaccination for the treatment of glioma and literature review

  • Ming Li
  • Shuangyin Han
  • Xiwen Shi
Original Article


Glioma is one of the greatest threats to human health, and invasive growth of glioma is its major cause of death. Inhibiting or blocking angiogenesis can effectively inhibit tumor growth and metastasis or dramatically reduce the size of the original lesion. Therefore, anti-angiogenic therapy has currently become the most promising treatment strategy for glioma. Although dendritic cells (DCs) used in DC-based immunotherapy are loaded with tumor-associated antigens, the anti-tumor immune response is effectively stimulated in cytotoxic specific T lymphocytes (CTLs), thereby achieving targeted killing of tumor cells without harming surrounding normal cells. This makes it a highly promising new form of therapy. This article reviews the existing evidence regarding in situ DC vaccination for the treatment of glioma and puts forward hypotheses regarding patient, tumor, and technical factors and warrant further investigation.


Chitosan nanoparticles Dendritic cells Glioma Vaccination 


Conflicts of interest



  1. 1.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Kerbel RS. A cancer therapy resistant to resistance. Nature. 1997;390(27):335–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Gille J. Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Exp Dermatol. 2006;15(3):175–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Juratli TA, Schackert G, Krex D. Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther. 2013;139(3):341–58.CrossRefPubMedGoogle Scholar
  5. 5.
    Fan M, Liu Y, Xia F, Wang Z, Huang Y, Li J, et al. Increased expression of EphA2 and E-N cadherin switch in primary hepatocellular carcinoma. Tumori. 2013;99(6):689–96.PubMedGoogle Scholar
  6. 6.
    Russo S, Incerti M, Tognolini M, Castelli R, Pala D, Hassan-Mohamed I, et al. Synthesis and structure-activity relationships of amino acid conjugates of cholanic acid as antagonists of the EphA2 receptor. Molecules. 2013;18(10):13043–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen H, Yuan B, Zheng Z, Liu Z, Wang S, Liu YA. Novel vaccine containing EphA2 epitope and LIGHT plasmid induces robust cellular immunity against glioma U251 cells. Cell Immunol. 2011;272(1):102–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Alho I, Costa L, Bicho M, Coelho C. Low molecular weight protein tyrosine phosphatase isoforms regulate breast cancer cells migration through a RhoA dependent mechanism. PLoS One. 2013;8(9):e76307.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Strimpakos A, Pentheroudakis G, Kotoula V, De Roock W, Kouvatseas G. The prognostic role of ephrin A2 and endothelial growth factor receptor pathway mediators in patients with advanced colorectal cancer treated with cetuximab. Clin Colorectal Cancer. 2013;12(4):267–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther. 2013;21(11):2087–101.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Mantripragada K, Khurshid H. Targeting genomic alterations in squamous cell lung cancer. Front Oncol. 2013;3(8):195.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee HY, Mohammed KA, Goldberg EP, Nasreen N. Arginine-conjugated albumin microspheres inhibits proliferation and migration in lung cancer cells. Am J Cancer Res. 2013;3(3):266–77.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lu XS, Sun W, Ge CY, Zhang WZ, Fan YZ. Contribution of the PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. Int J Oncol. 2013;42(6):2103–15.PubMedGoogle Scholar
  14. 14.
    Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6(7):559–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Howard KA, Rahbek UL, Liu X. RNA interference in vitro and in vivo using a novel Chitosan/siRNA nanoparticle system. Mol Ther. 2006;14(4):476–84.CrossRefPubMedGoogle Scholar
  17. 17.
    Laperchia C, Allegra Mascaro AL, Sacconi L, Andrioli A, Matt A, De Franceschi L, et al. Two-photon microscopy imaging of thy1GFP-M transgenic mice: a novel animal model to investigate brain dendritic cell subsets in vivo. PLoS One. 2013;8(2):e56144.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li M, Wang B, Wu Z, Zhang J, Shi X, Han S. A novel recombinant protein of ephrinA1-PE38/GM-CSF activate dendritic cells vaccine in rats with glioma. Tumor Biol. 2015. doi: 10.1007/s13277-015-3217-5.Google Scholar
  19. 19.
    Wang X, Zhao HY, Zhang FC, Sun Y, Xiong ZY, Jiang XB. Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Invest. 2014;32(9):451–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Eyrich M, Rachor J, Schreiber SC, Wölfl M, Schlegel PG. Dendritic cell vaccination in pediatric gliomas: lessons learnt and future perspectives. Front Pediatr 2013;10;1:12.Google Scholar
  21. 21.
    Li M, Wang B, Wu Z, Zhang J, Shi X, Han S. Treatment of glioma rat models using EphrinA1-PE38/GM-CSF chitosan nanoparticles by in-situ activation of dendritic cells. Tumour Biol (2015).Google Scholar
  22. 22.
    Kyte JA, Mu L, Aamdal S, Kvalheim G. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther. 2006;13(10):905–18.CrossRefPubMedGoogle Scholar
  23. 23.
    Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29(3):330–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, et al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol. 1999;161(3):777–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang H, Su X, Zhang P, Liang J, Wei H, Wan M, et al. Recombinant heat shock protein 65 carrying PADRE and HBV epitopes activates dendritic cells and elicits HBV-specific CTL responses. Vaccine. 2011;29(12):2328–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Debenedette MA, Calderhead DM, Tcherepanova IY, Nicolette CA, Healey DG. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother. 2011;34(1):45–57.CrossRefPubMedGoogle Scholar
  27. 27.
    Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, et al. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A. 2000;97(6):2715–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity. 2010;33(5):699–712.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu Y, Zhang W, Chan T, Saxena A, Xiang J. Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk Res. 2002;26(8):757–63.CrossRefPubMedGoogle Scholar
  30. 30.
    Wertel I, Bednarek W, Stachowicz N, Rogala E, Nowicka A, Kotarski J. Phenotype of dendritic cells generated from peripheral blood monocytes of patients with ovarian cancer. Transplant Proc. 2010;42(8):3301–5.CrossRefPubMedGoogle Scholar
  31. 31.
    den Brok MH, Sutmuller RP, Nierkens S, Bennink EJ, Frielink C. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer. 2006;95(7):896–905.CrossRefGoogle Scholar
  32. 32.
    Martins A, Han J, Kim SO. The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis. IUBMB Life. 2010;62(8):611–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee JH, Roh MS, Lee YK, Kim MK, Han JY. Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model. Cancer Gene Ther. 2010;17(2):73–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Si T, Guo Z, Hao X. Combined cryoablation and GM-CSF treatment for metastatic hormone refractory prostate cancer. J Immunother. 2009;32(1):86–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Ward JE, Mcneel DG. GVAX: an allogeneic, whole-cell, GM-CSF-secreting cellular immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther. 2007;7(12):1893–902.CrossRefPubMedGoogle Scholar
  36. 36.
    Nemunaitis J. Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Rev Vaccines. 2005;4(3):259–74.CrossRefPubMedGoogle Scholar
  37. 37.
    Harzstark AL, Small EJ. Sipuleucel-T for the treatment of prostate cancer. Drugs Today (Barc). 2008;44(4):271–8.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of NeurosurgeryThe People’s Hospital of Zhengzhou UniversityZhengzhou CityPeople’s Republic of China

Personalised recommendations