Tumor Biology

, Volume 37, Issue 2, pp 2305–2311 | Cite as

Identification of expression quantitative trait loci of RPTOR for susceptibility to glioma

Original Article

Abstract

Expression quantitative trait loci (eQTLs) have been recognized to be more likely to associate with complex diseases including cancer. As an essential scaffold for MTOR complex 1, RPTOR is necessary for the MTOR-catalyzed phosphorylation. This study examined the associations between the eQTLs of RPTOR and glioma susceptibility. The eQTLs of RPTOR were obtained from GTEx eQTL Browser. Associations were estimated by logistic regression models. On the basis of analysis of 138 cases with glioma and 327 cancer-free population controls, we demonstrated that the eQTL of RPTOR, rs7502563, was significantly associated with a decreased glioma risk [odds ratio (OR) = 0.59, 95 % confidence interval (CI) = 0.38–0.89, P = 0.0123] in a dominant manner. Stratified analyses indicated that the association between rs7502563 and glioma was more pronounced in females (OR = 0.40, 95 % CI = 0.20–0.80, P = 0.0091), older subjects (OR = 0.47, 95 % CI = 0.26–0.86, P = 0.0135), and subjects with high-grade glioma (OR = 0.45, 95 % CI = 0.27–0.77, P = 0.0031). Moreover, an interest gradual decrease in OR with higher grade glioma was observed. Further analysis of the extracted data from GTEx eQTL Browser found that rs7502563 G allele was associated with significantly higher expression of RPTOR in all HapMap populations. Our results demonstrate for the first time that the eQTL of RPTOR, rs7502563, is susceptible to glioma.

Keywords

Genetic susceptibility Expression quantitative trait locus Glioma RPTOR 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China [81301772], and the Natural Science Foundation of Fujian Province, China [2014J05087].

Conflicts of interest

None

Supplementary material

13277_2015_3956_MOESM1_ESM.doc (88 kb)
ESM 1 (DOC 88 kb)

References

  1. 1.
    Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2(9):494–503. quiz 1 p following 16.CrossRefPubMedGoogle Scholar
  2. 2.
    Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41(8):905–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet. 2012;131(12):1877–88.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Walsh KM, Codd V, Smirnov IV, Rice T, Decker PA, Hansen HM, et al. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet. 2014;46(7):731–5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Jhanwar-Uniyal M, Albert L, McKenna E, Karsy M, Rajdev P, Braun A, et al. Deciphering the signaling pathways of cancer stem cells of glioblastoma multiforme: role of Akt/mTOR and MAPK pathways. Adv Enzym Regul. 2011;51(1):164–70.CrossRefGoogle Scholar
  8. 8.
    The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  9. 9.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cheng CK, Fan QW, Weiss WA. PI3K signaling in glioma—animal models and therapeutic challenges. Brain Pathol. 2009;19(1):112–20.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 2001;61(18):6674–8.PubMedGoogle Scholar
  12. 12.
    Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ, et al. Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg. 2001;95(3):480–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328(5982):1172–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, et al. Dissecting eIF4E action in tumorigenesis. Genes Dev. 2007;21(24):3232–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.CrossRefPubMedGoogle Scholar
  16. 16.
    Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Huang M, Ke Y, Sun X, Yu L, Yang Z, Zhang Y, et al. Mammalian target of rapamycin signaling is involved in the vasculogenic mimicry of glioma via hypoxia-inducible factor-1alpha. Oncol Rep. 2014;32(5):1973–80.PubMedGoogle Scholar
  18. 18.
    Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nakamura JL, Garcia E, Pieper RO. S6K1 plays a key role in glial transformation. Cancer Res. 2008;68(16):6516–23.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.CrossRefPubMedGoogle Scholar
  21. 21.
    Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.CrossRefPubMedGoogle Scholar
  22. 22.
    Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4):e1000888.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jiang J, Jia P, Shen B, Zhao Z. Top associated SNPs in prostate cancer are significantly enriched in cis-expression quantitative trait loci and at transcription factor binding sites. Oncotarget. 2014;5(15):6168–77.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    The GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, et al. Population genomics of human gene expression. Nat Genet. 2007;39(10):1217–24.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bercury KK, Dai J, Sachs HH, Ahrendsen JT, Wood TL, Macklin WB. Conditional ablation of raptor or rictor has differential impact on oligodendrocyte differentiation and CNS myelination. J Neurosci. 2014;34(13):4466–80.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Umemura A, Park EJ, Taniguchi K, Lee JH, Shalapour S, Valasek MA, et al. Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab. 2014;20(1):133–44.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Choi C, Gillespie GY, Van Wagoner NJ, Benveniste EN. Fas engagement increases expression of interleukin-6 in human glioma cells. J Neurooncol. 2002;56(1):13–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Tchirkov A, Khalil T, Chautard E, Mokhtari K, Veronese L, Irthum B, et al. Interleukin-6 gene amplification and shortened survival in glioblastoma patients. Br J Cancer. 2007;96(3):474–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ. Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene. 2002;21(55):8404–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang H, Lathia JD, Wu Q, Wang J, Li Z, Heddleston JM, et al. Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells. 2009;27(10):2393–404.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Weissenberger J, Loeffler S, Kappeler A, Kopf M, Lukes A, Afanasieva TA, et al. IL-6 is required for glioma development in a mouse model. Oncogene. 2004;23(19):3308–16.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H, Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN. Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Investig. 2004;84(8):941–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang X, Yue P, Kim YA, Fu H, Khuri FR, Sun SY. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. Cancer Res. 2008;68(18):7409–18.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.The First Department of Chemotherapy, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
  2. 2.Department of Laboratory Medicine, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
  3. 3.Department of Radiation Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
  4. 4.Department of Medicine, The Third Affiliated People’s HospitalFujian University of Traditional Chinese MedicineFuzhouChina

Personalised recommendations