Tumor Biology

, Volume 37, Issue 2, pp 1817–1824 | Cite as

Neo-epitopes on crotonaldehyde modified DNA preferably recognize circulating autoantibodies in cancer patients

  • Badar ul Islam
  • Parvez Ahmad
  • Gulam Rabbani
  • Kiran Dixit
  • Moinuddin
  • Shahid Ali Siddiqui
  • Asif Ali
Original Article


DNA damage is one of the leading causes of various pathological conditions including carcinogenesis. Crotonaldehyde is a 4-carbon unsaturated bifunctional aldehyde which is found ubiquitously and produced both exogenously and endogenously. It reacts with deoxyguanosine and form adducts with DNA. These adducts were detected and found involved in tumor formation in rats treated with crotonaldehyde. In the present study, structural changes in DNA by crotonaldehyde were evaluated by Fourier transform infrared (FTIR) spectroscopy, differential scanning colorimetry (DSC), dynamic light scattering (DLS), high-performance liquid chromatography (HPLC), and atomic force microscopy (AFM). Enhanced binding was observed in cancer autoantibodies with the DNA modified by crotonaldehyde than the native counterpart. Immunological studies revealed enhanced binding of cancer autoantibodies with crotonaldehyde modified DNA, compared to the native form. Furthermore, lymphocyte DNA isolated from cancer patients demonstrated considerable recognition of anti-Cro-DNA IgG as compared to the DNA from healthy individuals. Therefore, we suggest that crotonaldehyde modified DNA presents unique epitopes, that may trigger autoantibody induction in cancer patients.


Human DNA Crotonaldehyde Crosslinking Neo-epitopes Cancer 



One of the authors B. U. I. is thankful to University Grant Commission-Maulana Azad National Fellowship (UGC-MANF) for financial support as Senior Research Fellow (2011-12-MANF-MUS-UTT-24). Assistance from the Institution (AMU) as well as infrastructural support from DST-FIST to the department is duly acknowledged. The authors are grateful to Inderchand Rajgarhia and Sons Pvt. (India) Ltd for providing mica sheets.



Conflicts of interest



  1. 1.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.CrossRefPubMedGoogle Scholar
  2. 2.
    Vasiliou V, Pappa A, Petersen DR. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact. 2000;129:1–19.CrossRefPubMedGoogle Scholar
  3. 3.
    Bont RD, Larebeke NV. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19:169–85.CrossRefPubMedGoogle Scholar
  4. 4.
    International Agency for Research on Cancer. Dry cleaning, some chlorinated solvents and other industrial chemicals, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, IARC, Lyon. 1995; 63:373-91.Google Scholar
  5. 5.
    Chung FL, Chen HJ, Nath RG. Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts. Carcinogenesis. 1996;17:2105–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Chung FL, Young R, Hecht SS. Formation of cyclic 1, N2-propanodeoxyguanosine adducts in DNA upon reaction with acrolein or crotonaldehyde. Cancer Res. 1984;44:990–5.PubMedGoogle Scholar
  7. 7.
    Wang M, McIntee EJ, Cheng G, Shi Y, Villalta PW, Hecht SS. Identification of DNA adducts of acetaldehyde. Chem Res Toxicol. 2000;13:1149–57.CrossRefPubMedGoogle Scholar
  8. 8.
    Kozekov ID, Nechev LV, Moseley MS, Harris CM, Rizzo CJ, Stone MP, et al. DNA interchain crosslinks formed by acrolein and crotonaldehyde. J Am Chem Soc. 2003;125:50–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Fernandes PH, Kanuri M, Nechev LV, Harris TM, Lloyd RS. Mammalian cell mutagenesis of the DNA adducts of vinyl chloride and crotonaldehyde. Environ Mol Mutagen. 2005;45:455–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Nath RG, Chung FL. Detection of exocyclic 1, N2-propanodeoxyguanosine adducts as common DNA lesions in rodents and human. Proc Natl Acad Sci U S A. 1994;91:7491–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nath RG, Ocando JE, Chung FL. Detection of 1, N2-propanodeoxyguanosine adducts as potential endogenous DNA lesions in rodent and human tissues. Cancer Res. 1996;56:452–6.PubMedGoogle Scholar
  12. 12.
    Parkin DM, Pisani P, Lopez AD, Masuyer E. At least one in seven cases of cancer is caused by smoking. Global estimates for 1985. Int J Cancer. 1994;59:494–504.CrossRefPubMedGoogle Scholar
  13. 13.
    Nath RG, Ocando JE, Guttenplan JB, Chung FL. 1, N2-propanodeoxyguanosine adducts: potential new biomarkers of smoking-induced DNA damage in human oral tissue. Cancer Res. 1998;58:581–4.PubMedGoogle Scholar
  14. 14.
    Zhang S, Villalta PW, Wang M, Hecht SS. Analysis of crotonaldehyde- and acetaldehyde-derived 1, N2-propanodeoxyguanosine adducts in DNA from human tissues using liquid chromatography electrospray ionization tandem mass spectrometry. Chem Res Toxicol. 2006;19:1386–92.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Carmella SG, Chen M, Zarth A, Hecht SS. High throughput liquid chromatography–tandem mass spectrometry assay for mercapturic acids of acrolein and crotonaldehyde in cigarette smokers’ urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;935:36–40.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hashim MF, Mameli LJ. Sequence-dependent induction of base-pair substitutions and frameshifts by propanodeoxyguanosine during in vitro DNA replication. J Biol Chem. 1996;271:9160–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Moriya M, Zhang W, Johnson F, Grollman AP. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A. 1994;91:11899–903.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Khan S, Moinuddin, Alam K, Ali A. Oxidatively damaged DNA: A possible antigenic stimulus for cancer autoantibodies. Indian J Clin Biochem. 2010;25:244–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Islam BU, Moinuddin, Mahmood R, Ali A. Genotoxicity and immunogenicity of crotonaldehyde modified human DNA. Int J Biol Macromol. 2014;65:471–8.CrossRefGoogle Scholar
  20. 20.
    Chung FL, Hecht SS. Formation of cyclic 1, N2-adducts by reaction of deoxyguanosine with alpha-acetoxy-N-nitrosopyrrolidine, 4-(carbethoxynitrosamino)butanal, or crotonaldehyde. Cancer Res. 1983;43:1230–5.PubMedGoogle Scholar
  21. 21.
    Ahmad S, Moinuddin, Dixit K, Shahab U, Alam K, Ali A. Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+. Biochem Biophys Res Commun. 2011;407:568–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Lando DY, Chang CL, Fridman AS, Grigoryan IE, Galyuk EN, Hsueh YW, et al. Comparative thermal and thermodynamic study of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin. J Inorg Biochem. 2014;137:85–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Rabbani G, Ahmad E, Zaidi N, Khan RH. pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochem Biophys. 2011;61:551–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Arimoto-Kobayashi S, Kaji K, Sweetman GM, Hayatsu H. Mutation and formation of methyl- and hydroxylguanine adducts in DNA caused by N-nitrosodimethylamine and N-nitrosodiethylamine with UVA irradiation. Carcinogenesis. 1997;18:2429–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Li Y, Yildiz UH, Müllen K, Gröhn F. Association of DNA with multivalent organic counterions: from flowers to rods and toroids. Biomacromolecules. 2009;10:530–40.CrossRefPubMedGoogle Scholar
  26. 26.
    Alam K, Moinuddin, Jabeen S. Immunogenicity of mitochondrial DNA modified by hydroxyl radical. Cell Immunol. 2007;247:12–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Ali R, Alam K. Evaluation of antibodies against oxygen free radical modified DNA by ELISA. In: Armstrong D, editor. Methods in Molecular Biology: Oxidative Stress Biomarkers and Antioxidant Protocols, 1st ed. Totowa, NJ: Humana Press. 2002;186:171–81.Google Scholar
  28. 28.
    Dixit K, Moinuddin, Ali A. Immunological studies on peroxynitrite modified human DNA. Life Sci. 2005;77:2626–42.CrossRefPubMedGoogle Scholar
  29. 29.
    Dixit K, Ali R. Role of nitric oxide modified DNA in the etiopathogenesis of systemic lupus erythematosus. Lupus. 2004;13:95–100.CrossRefPubMedGoogle Scholar
  30. 30.
    Habib S, Moinuddin, Ali A, Ali R. Preferential recognition of peroxynitrite modified human DNA by circulating autoantibodies in cancer patients. Cell Immunol. 2009;254:117–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Yuan J, Gao Y, Wang R, Chen M, Carmella SG, Hecht SS. Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis. 2012;33:804–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jangir DK, Tyagi G, Mehrotra R, Kundu S. Carboplatin interaction with calf-thymus DNA: A FTIR spectroscopic approach. J Mol Structure. 2010;969:126–9.CrossRefGoogle Scholar
  33. 33.
    Chang CL, Lando DY, Fridman AS, Hu CK. Thermal stability of DNA with interstrand crosslinks. Biopolymers. 2012;97:807–17.CrossRefPubMedGoogle Scholar
  34. 34.
    Zaludová R, Kleinwächter V, Brabec V. The effect of ionic strength on melting of DNA modified by platinum (II) complexes. Biophys Chem. 1996;60:135–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Hellweg T, Henry-Toulmé N, Chambon M, Roux D. Interaction of short DNA fragments with the cationic polyelectrolyte poly(ethylene imine): a dynamic light scattering study. Colloids Surf A Physicochem Eng Asp. 2000;163:71–80.CrossRefGoogle Scholar
  36. 36.
    Dey D, Kumar S, Banerjee R, Maiti S, Dhara D. Polyplex formation between PEGylated linear cationic block copolymers and DNA: equilibrium and kinetic studies. J Phys Chem B. 2014;118:7012–25.CrossRefPubMedGoogle Scholar
  37. 37.
    Inagaki S, Esaka Y, Deyashiki Y, Sako M, Goto M. Analysis of DNA adducts of acetaldehyde by liquid chromatography-mass spectrometry. J Chromatogr A. 2003;987:341–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Mukhopadhyay R, Dubey P, Sarkar S. Structural changes of DNA induced by mono- and binuclear cancer drugs. J Struct Biol. 2005;150:277–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Arjumand S, Arif Z, Ali A, Ali R. Native DNA fragments photocrosslinked to psoralen binds to anti-B and anti-Z DNA antibodies. Immunol Lett. 1995;48:215–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Poklar N, Pilch DS, Lippard SJ, Redding EA, Dunham SU, Breslauer KJ. Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex. Proc Natl Acad Sci U S A. 1996;93:7606–11.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Arjumand S, Ali A. Cross-reactions of human lupus autoantibodies with 8-methoxypsoralen photomodified DNA fragments. Microbiol Immunol. 1994;38:239–43.CrossRefPubMedGoogle Scholar
  42. 42.
    Isenberg DA, Ehrenstein MR, Longhurst C, Kalsi J. The origin, sequence, structure and sequence of developing anti-DNA antibodies—A human perspective. Arthritis Rheum. 1994;37:169–80.CrossRefPubMedGoogle Scholar
  43. 43.
    Moinuddin, Ali A. SLE anti-DNA autoantibodies binding estradiol albumin-DNA conjugate. Lupus. 1994;3:43–6.Google Scholar
  44. 44.
    Abdi S, Ali A. Role of ROS modified human DNA in the pathogenesis and etiology of cancer. Cancer Lett. 1999;142:1–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Badar ul Islam
    • 1
  • Parvez Ahmad
    • 1
  • Gulam Rabbani
    • 2
  • Kiran Dixit
    • 1
  • Moinuddin
    • 1
  • Shahid Ali Siddiqui
    • 3
  • Asif Ali
    • 1
  1. 1.Department of Biochemistry, J. N. Medical CollegeAligarh Muslim UniversityAligarhIndia
  2. 2.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Radiotherapy, J. N. Medical CollegeAligarh Muslim UniversityAligarhIndia

Personalised recommendations