Tumor Biology

, Volume 37, Issue 2, pp 1573–1579 | Cite as

Ruxolitinib induces autophagy in chronic myeloid leukemia cells

  • Bakiye Goker Bagca
  • Ozgun Ozalp
  • Cansu Caliskan Kurt
  • Zeynep Mutlu
  • Guray Saydam
  • Cumhur Gunduz
  • Cigir Biray Avci
Original Article


Ruxolitinib is the first agent used in myelofibrosis treatment with its potent JAK2 inhibitory effect. In this novel study, we aimed to discover the anti-leukemic effect of ruxolitinib in K-562 human chronic myeloid leukemia cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Cytotoxic effect of ruxolitinib was determined by using WST-1 assay. IC50 values for K-562 and NCI-BL 2171 cell lines were defined as 20 and 23.6 μM at the 48th hour, respectively. Autophagic effects of ruxolitinib were detected by measuring LC3B-II protein formation. Ruxolitinib induced autophagic cell death in K-562 and NCI-BL 2171 cell lines 2.11- and 1.79-fold compared to control groups, respectively. To determine the autophagy-related gene expression changes, total RNA was isolated from K-562 and NCI-BL 2171 cells treated with ruxolitinib and untreated cells as control group. Reverse transcription procedure was performed for cDNA synthesis, and gene expressions were shown by RT-qPCR. Ruxolitinib treatment caused a notable decrease in expression of AKT, mTOR, and STAT autophagy inhibitor genes in K-562 cells, contrariwise control cell line. Ruxolitinib is a promising agent in chronic myeloid leukemia treatment by blocking JAK/STAT pathway known as downstream of BCR-ABL and triggering autophagy. This is the first study that reveals the relationship between ruxolitinib and autophagy induction.


Ruxolitinib Chronic myeloid leukemia Autophagy JAK/STAT pathway 



This study was supported by the Research Foundation of Ege University Medical School (Grant Number 2014/TIP/048).


  1. 1.
    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002; 2292-2302.Google Scholar
  2. 2.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2008;2009:937–51.Google Scholar
  3. 3.
    Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89(5):547–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Nowell P, Hungerford D. A minute chromosome in human chronic granulocytic leukemia [abstract]. Science. 1960;132:1497.Google Scholar
  5. 5.
    Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–4.CrossRefPubMedGoogle Scholar
  7. 7.
    Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.CrossRefPubMedGoogle Scholar
  8. 8.
    Buchdunger E. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996;56:100–4.PubMedGoogle Scholar
  9. 9.
    Sawyers CL. Imatinib induces hematologic hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood. 2002;99:3530–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Manley P, Cowan-Jacob S, Mestan J. Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochimica et Biophysica Acta. 2005;1754.Google Scholar
  11. 11.
    Jabbour E, Cortes J, Kantarjian H. Nilotinib for the treatment of chronic myeloid leukemia: an evidence-based review. Core Evid. 2009;4:207–13.CrossRefGoogle Scholar
  12. 12.
    Okarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, et al. The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006;66(11):5790–7.CrossRefGoogle Scholar
  13. 13.
    O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ávalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AFG. Tumor suppression and promotion by autophagy. BioMed Res Int. 2014;1-15.Google Scholar
  15. 15.
    Strozyk E, Kulms D. The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int J Mol Sci. 2013;14:15260–85.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fan YJ, Zong WX. The cellular decision between apoptosis and autophagy. Chin J Cancer.2013; 121-29.Google Scholar
  17. 17.
    Ostojic A, Vrhovac R, Verstovsek S. Ruxolitinib: a new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol. 2011;7(9):1035–43.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, et al. The role of JAK-STAT signaling within the CNS. Landes Biosci. 2013;e22925:1–10.Google Scholar
  19. 19.
    Lütticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994;263(5143):89–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang LPH, Keating GM. Ruxolitinib in the treatment of myelofibrosis. Drugs. 2012;72(16):2117–27.CrossRefPubMedGoogle Scholar
  21. 21.
    Ruxolitinib, Pan JAK Inhibitor
  22. 22.
    Bahadori M. New advances in RNAs. Arch Iran Med. 2006;11(4):435–43.Google Scholar
  23. 23.
    Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, et al. Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org Lett. 2009;11(9):1999–2002.CrossRefPubMedGoogle Scholar
  24. 24.
    Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1-2):1–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Yarilina A, Xu K, Chan C, Ivashkiv LB. Regulation of inflammatory responses in tumor necrosis factor-activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. Arthritis Rheum. 2012;64(12):3856–66.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gallipoli P, Pellicano F, Morrison H, Laidlaw K, Allan EK, Bhatia R, et al. Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation. Blood. 2013;122(19):3335–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NFkappaB and JNK activation in hepatocytes. Biochem Pharmacol. 2006;72(9):1090–101.CrossRefPubMedGoogle Scholar
  29. 29.
    Stein SJ, Baldwin AS. NF-κB suppresses ROS levels in BCR-ABL(+) cells to prevent activation of JNK and cell death. Oncogene. 2011;30(45):4557–66.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wilson GS, Tian A, Hebbard L, Duan W, George J, Li X, et al. Tumoricidal effects of the JAK inhibitor Ruxolitinib (INC424) on hepatocellular carcinoma in vitro. Cancer Lett. 2013;341(2):224–30.CrossRefPubMedGoogle Scholar
  31. 31.
    Hu Y, Hong Y, Xu Y, Liu P, Guo DH, Chen Y. Inhibition of the JAK/STAT pathway with ruxolitinib overcomes cisplatin resistance in non-small-cell lung cancer NSCLC. Apoptosis. 2014;19(11):1627–36.CrossRefPubMedGoogle Scholar
  32. 32.
    Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J. 2002;21(21):5766–74.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet. 2009;41(7):783–92.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Woessner DW, Lim CS. Disrupting BCR-ABL in combination with secondary leukemia specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation. Mol Pharm. 2013;10(1):270–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocytemacrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.CrossRefPubMedGoogle Scholar
  36. 36.
    Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K, et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet. 2002;30(1):48–58.CrossRefPubMedGoogle Scholar
  37. 37.
    Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T, et al. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med. 2014;211(4):701–13.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med. 2007;13(6):730–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Thomas EK, Cancelas JA, Chae HD. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell. 2007;12:467–78.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang H, Peng C, Hu Y, Li H, Sheng Z, Chen Y, et al. The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat Genet. 2012;44(8):861–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Weisberg E, Azab AK, Manley PW, Kung AL, Christie AL, Bronson R, et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia. 2012;26(5):985–90.CrossRefPubMedGoogle Scholar
  42. 42.
    Rao R, Fiskus W, Yang Y, Lee P, Joshi R, Fernandez P, et al. HDAC6 inhibition enhances 17-AAG-mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood. 2008;112(5):1886–93.CrossRefPubMedGoogle Scholar
  43. 43.
    Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP, et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013;19(11):1513–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dunlop EA, Tee AR. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol. 2014. doi: 10.1016/j.semcdb.2014.08.006.PubMedGoogle Scholar
  45. 45.
    Evangelisti C, Ricci F, Tazzari P, Chiarini F, Battistelli M, Falcieri E, et al. Preclinical testing of the Akt inhibitor triciribine in T-cell acute lymphoblastic leukemia. J Cell Physiol. 2011;226(3):822–31.CrossRefPubMedGoogle Scholar
  46. 46.
    Fan J, Dong X, Zhang W, Zeng X, Li Y, Sun Y, et al. Tyrosine kinase inhibitor Thiotanib targets Bcr-Abl and induces apoptosis and autophagy in human chronic myeloid leukemia cells. Appl Microbiol Biotechnol. 2014;98(23):9763–75.CrossRefPubMedGoogle Scholar
  47. 47.
    Bartalucci N, Guglielmelli P, Vannucchi AM. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk. 2013;13 Suppl 2:S307–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee-Sherick AB, Eisenman KM, Sather S, McGranahan A, Armistead PM, McGary CS, et al. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene. 2013;32(46):5359–68.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Luo S, Rubinsztein DC. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ. 2007;14(7):1247–50.CrossRefPubMedGoogle Scholar
  50. 50.
    Peng X, Li W, Yuan L, Mehta RG, Kopelovich L, McCormick DL. Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21. PLoS One. 2013;8(8):e70442.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Bakiye Goker Bagca
    • 1
  • Ozgun Ozalp
    • 1
  • Cansu Caliskan Kurt
    • 1
  • Zeynep Mutlu
    • 1
  • Guray Saydam
    • 2
  • Cumhur Gunduz
    • 1
  • Cigir Biray Avci
    • 1
  1. 1.Department of Medical Biology, School of MedicineEge UniversityIzmirTurkey
  2. 2.Department of Hematology, School of MedicineEge UniversityIzmirTurkey

Personalised recommendations