Tumor Biology

, Volume 37, Issue 2, pp 1889–1899 | Cite as

Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression

  • Dong Tang
  • Jun Gao
  • Sen Wang
  • Nianyuan Ye
  • Yang Chong
  • Yuqin Huang
  • Jie Wang
  • Bin Li
  • Wei Yin
  • Daorong Wang
Original Article



Galectin-1, an evolutionarily conserved glycan-binding protein with angiogenic potential, was recently identified as being overexpressed in cancer-associated fibroblasts (CAFs) of gastric cancer. The role of endogenous CAF-derived galectin-1 on angiogenesis in gastric cancer and the mechanism involved remain unknown.


Immunohistochemical staining was used to investigate the correlation between galectin-1 and vascular endothelial growth factor (VEGF) and CD31 expression in gastric cancer tissues and normal gastric tissues. Galectin-1 was knocked down in CAFs isolated from gastric cancer using small interfering ribonucleic acid (RNA), or overexpressed using recombinant lentiviruses, and the CAFs were co-cultured with human umbilical vein endothelial cells (HUVECs) or cancer cells. Subsequently, proliferation, migration, tube formation, and VEGF/VEGF receptor (VEGFR) 2 expression were detected. The role of CAF-derived galectin-1 in tumor angiogenesis in vivo was studied using the chick chorioallantoic membrane (CAM) assay.


Galectin-1 was highly expressed in the CAFs and was positively associated with VEGF and CD31 expression. In the co-culture, high expression of galectin-1 in the CAFs increased HUVEC proliferation, migration, tube formation, and VEGFR2 phosphorylation and enhanced VEGF expression in gastric cancer cells. The CAM assay indicated that high expression of galectin-1 in the CAFs accelerated tumor growth and promoted angiogenesis. In contrast, galectin-1 knockdown in the CAFs significantly inhibited this effect.


CAF-derived galectin-1 significantly promotes angiogenesis in gastric cancer and may be a target for angiostatic therapy.


Angiogenesis Cancer-associated fibroblasts Galectin-1 Gastric cancer 



We thank Prof. Lu Chun (Department of Microbiology and Immunology, Nanjing Medical University, China) for kindly providing the lentiviral packaging system consisting of pHAGE-CMV-MCS-IZs Green, psPAX2, and pMD2.G. We would like to thank the native English speaking scientists of Elixigen Company for editing our manuscript.

Conflicts of interest



This work was supported by a grant from the National Natural Science Foundation of China (No. 81172279).


  1. 1.
    Kalluri R, Zeisberg M. Fibroblasts in cancer, nature reviews. Cancer. 2006;6:392–401.PubMedGoogle Scholar
  2. 2.
    Fuyuhiro Y, Yashiro M, Noda S, Matsuoka J, Hasegawa T, Kato Y, et al. Cancer-associated orthotopic myofibroblasts stimulates the motility of gastric carcinoma cells. Cancer Sci. 2012;103:797–805.CrossRefPubMedGoogle Scholar
  3. 3.
    Sung CO, Lee KW, Han S, Kim SH. Twist1 is up-regulated in gastric cancer-associated fibroblasts with poor clinical outcomes. Am J Pathol. 2011;179:1827–38.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Worthley DL, Giraud AS, Wang TC. Stromal fibroblasts in digestive cancer. Cancer Microenviron: Off J Int Cancer Microenviron Soc. 2010;3:117–25.CrossRefGoogle Scholar
  5. 5.
    Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303:848–51.CrossRefPubMedGoogle Scholar
  6. 6.
    Kitadai Y (2009) Cancer-stromal cell interaction and tumor angiogenesis in gastric cancer. Cancer Microenviron: Off J Int Cancer Microenviron SocGoogle Scholar
  7. 7.
    Guo X, Oshima H, Kitmura T, Taketo MM, Oshima M. Stromal fibroblasts activated by tumor cells promote angiogenesis in mouse gastric cancer. J Biol Chem. 2008;283:19864–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Tang D, Wang D, Yuan Z, Xue X, Zhang Y, An Y, et al. Persistent activation of pancreatic stellate cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal adenocarcinoma. Int J Cancer. 2013;132:993–1003.CrossRefPubMedGoogle Scholar
  9. 9.
    Watanabe M, Hirano T, Asano G. Roles of myofibroblasts in the stroma of human gastric carcinoma. Nihon Geka Gakkai Zasshi. 1995;96:10–8.PubMedGoogle Scholar
  10. 10.
    Semba S, Kodama Y, Ohnuma K, Mizuuchi E, Masuda R, Yashiro M, et al. Direct cancer-stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells. Br J Cancer. 2009;101:1365–73.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shimoda M, Mellody KT, Orimo A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol. 2010;21:19–25.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yashiro M, Hirakawa K. Cancer-stromal interactions in scirrhous gastric carcinoma. Cancer microenvironment : official journal of the International Cancer Microenvironment Society. 2010;3:127–35.CrossRefGoogle Scholar
  13. 13.
    Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.CrossRefPubMedGoogle Scholar
  14. 14.
    Holmberg C, Quante M, Steele I, Kumar JD, Balabanova S, Duval C, et al. Release of TGFbetaig-h3 by gastric myofibroblasts slows tumor growth and is decreased with cancer progression. Carcinogenesis. 2012;33:1553–62.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhi K, Shen X, Zhang H, Bi J. Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers. J Exp Clin Cancer Res: CR. 2010;29:66.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 2006;1:119–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sund M, Kalluri R. Tumor stroma derived biomarkers in cancer. Cancer Metastasis Rev. 2009;28:177–83.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fan F, Schimming A, Jaeger D, Podar K. Targeting the tumor microenvironment: focus on angiogenesis. J Oncol. 2012;2012:281261.CrossRefPubMedGoogle Scholar
  20. 20.
    Vonlaufen A, Joshi S, Qu C, Phillips PA, Xu Z, Parker NR, et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res. 2008;68:2085–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.CrossRefPubMedGoogle Scholar
  22. 22.
    Seno H, Oshima M, Ishikawa TO, Oshima H, Takaku K, Chiba T, et al. Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res. 2002;62:506–11.PubMedGoogle Scholar
  23. 23.
    Shao J, Sheng GG, Mifflin RC, Powell DW, Sheng H. Roles of myofibroblasts in prostaglandin E2-stimulated intestinal epithelial proliferation and angiogenesis. Cancer Res. 2006;66:846–55.CrossRefPubMedGoogle Scholar
  24. 24.
    Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Narumiya S, et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat Med. 2001;7:1048–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Tang D, Yuan Z, Xue X, Lu Z, Zhang Y, Wang H, et al. High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int J Cancer. 2012;130:2337–48.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu MH, Hong TM, Cheng HW, Pan SH, Liang YR, Hong HC, et al. Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res: MCR. 2009;7:311–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A. 2006;103:15975–80.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kovacs-Solyom F, Blasko A, Fajka-Boja R, Katona RL, Vegh L, Novak J, et al. Mechanism of tumor cell-induced T-cell apoptosis mediated by galectin-1. Immunol Lett. 2010;127:108–18.CrossRefPubMedGoogle Scholar
  29. 29.
    Bektas S, Bahadir B, Ucan BH, Ozdamar SO. CD24 and galectin-1 expressions in gastric adenocarcinoma and clinicopathologic significance. Pathol Oncol Res: POR. 2010;16:569–77.CrossRefPubMedGoogle Scholar
  30. 30.
    Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y, et al. Upregulation of cancer-associated myofibroblasts by TGF-beta from scirrhous gastric carcinoma cells. Br J Cancer. 2011;105:996–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Xu X, Zhang X, Wang S, Qian H, Zhu W, Cao H, et al. Isolation and comparison of mesenchymal stem-like cells from human gastric cancer and adjacent non-cancerous tissues. J Cancer Res Clin Oncol. 2011;137:495–504.CrossRefPubMedGoogle Scholar
  32. 32.
    Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A. 2007;104:13134–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cooper D, Norling LV, Perretti M. Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow. J Leukoc Biol. 2008;83:1459–66.CrossRefPubMedGoogle Scholar
  34. 34.
    Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology. 2010;52:1322–33.CrossRefPubMedGoogle Scholar
  35. 35.
    Brown AC, Shah C, Liu J, Pham JT, Zhang JG, Jadus MR. Ginger’s (Zingiber officinale Roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro. Phytother Res: PTR. 2009;23:640–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Masamune A, Kikuta K, Watanabe T, Satoh K, Satoh A, Shimosegawa T. Pancreatic stellate cells express Toll-like receptors. J Gastroenterol. 2008;43:352–62.CrossRefPubMedGoogle Scholar
  37. 37.
    Bellou S, Pentheroudakis G, Murphy C, Fotsis T. Anti-angiogenesis in cancer therapy: Hercules and hydra. Cancer Lett. 2013;338:219–28.CrossRefPubMedGoogle Scholar
  38. 38.
    Chang HL, Wu YC, Su JH, Yeh YT, Yuan SS. Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2. J Pharmacol Exp Ther. 2008;325:841–9.CrossRefPubMedGoogle Scholar
  39. 39.
    D’Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M, Decaestecker C, et al. VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLoS One. 2013;8, e67029.Google Scholar
  40. 40.
    Hsieh SH, Ying NW, Wu MH, Chiang WF, Hsu CL, Wong TY, et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27:3746–53.CrossRefPubMedGoogle Scholar
  41. 41.
    Lazar D, Raica M, Sporea I, Taban S, Goldis A, Cornianu M. Tumor angiogenesis in gastric cancer. Rom J Morphol Embryol Rev Roum Morphol Embryol. 2006;47:5–13.Google Scholar
  42. 42.
    Terai S, Fushida S, Tsukada T, Kinoshita J, Oyama K, Okamoto K, Makino I, Tajima H, Ninomiya I, Fujimura T, Harada S, Ohta T (2014) Bone marrow derived “fibrocytes” contribute to tumor proliferation and fibrosis in gastric cancer. Gastric Cancer: Off J Int Gastric Cancer Assoc Jpn Gastric Cancer AssocGoogle Scholar
  43. 43.
    Balabanova S, Holmberg C, Steele I, Ebrahimi B, Rainbow L, Burdyga T, et al. The neuroendocrine phenotype of gastric myofibroblasts and its loss with cancer progression. Carcinogenesis. 2014;35:1798–806.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Vong S, Kalluri R. The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer. 2011;2:1139–45.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Granot D, Addadi Y, Kalchenko V, Harmelin A, Kunz-Schughart LA, Neeman M. In vivo imaging of the systemic recruitment of fibroblasts to the angiogenic rim of ovarian carcinoma tumors. Cancer Res. 2007;67:9180–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fang J, Yan L, Shing Y, Moses MA. HIF-1alpha-mediated up-regulation of vascular endothelial growth factor, independent of basic fibroblast growth factor, is important in the switch to the angiogenic phenotype during early tumorigenesis. Cancer Res. 2001;61:5731–5.PubMedGoogle Scholar
  48. 48.
    Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell. 2009;15:21–34.CrossRefPubMedGoogle Scholar
  49. 49.
    Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5:1597–601.CrossRefPubMedGoogle Scholar
  50. 50.
    Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Neuzillet C, Albert S, et al. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev. 2014;40:307–19.CrossRefPubMedGoogle Scholar
  51. 51.
    Thijssen VL, Griffioen AW. Galectin-1 and −9 in angiogenesis: a sweet couple. Glycobiology. 2014;24:915–20.CrossRefPubMedGoogle Scholar
  52. 52.
    Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res. 2010;70:6216–24.CrossRefPubMedGoogle Scholar
  53. 53.
    Le Mercier M, Mathieu V, Haibe-Kains B, Bontempi G, Mijatovic T, Decaestecker C, et al. Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J Neuropathol Exp Neurol. 2008;67:456–69.CrossRefPubMedGoogle Scholar
  54. 54.
    Freitag N, Tirado-Gonzalez I, Barrientos G, Herse F, Thijssen VL, Weedon-Fekjaer SM, et al. Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proc Natl Acad Sci U S A. 2013;110:11451–6.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Torry DS, Leavenworth J, Chang M, Maheshwari V, Groesch K, Ball ER, et al. Angiogenesis in implantation. J Assist Reprod Genet. 2007;24:303–15.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S, et al. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev. 2012;31:763–78.CrossRefPubMedGoogle Scholar
  57. 57.
    Tang D, Zhang J, Yuan Z, Gao J, Wang S, Ye N, et al. Pancreatic satellite cells derived galectin-1 increase the progression and less survival of pancreatic ductal adenocarcinoma. PLoS One. 2014;9, e90476.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Dong Tang
    • 1
  • Jun Gao
    • 1
  • Sen Wang
    • 2
  • Nianyuan Ye
    • 1
  • Yang Chong
    • 1
  • Yuqin Huang
    • 1
  • Jie Wang
    • 1
  • Bin Li
    • 1
  • Wei Yin
    • 1
  • Daorong Wang
    • 1
  1. 1.Department of Gastrointestinal SurgeryClinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province)YangzhouPeople’s Republic of China
  2. 2.College of Clinical MedicineNanjing Medical University (the First Affiliated Hospital of Nanjing Medical University)NanjingPeople’s Republic of China

Personalised recommendations