Tumor Biology

, Volume 37, Issue 2, pp 1753–1762 | Cite as

Influences of ERCC1, ERCC2, XRCC1, GSTP1, GSTT1, and MTHFR polymorphisms on clinical outcomes in gastric cancer patients treated with EOF chemotherapy

  • Rujiao Liu
  • Xiaoying Zhao
  • Xin Liu
  • Zhiyu Chen
  • Lixin Qiu
  • Ruixuan Geng
  • Weijian Guo
  • Guang He
  • Jiliang Yin
  • Jin Li
  • Xiaodong Zhu
Original Article


This study investigated the associations between genetic polymorphisms of six genes involved in DNA repair, detoxification pathways, and fluoropyrimidine metabolism and clinical outcomes in MGC patients receiving EOF treatment. This retrospective study included 108 Chinese MGC patients receiving EOF as first-line chemotherapy. Nine single nucleotide polymorphisms (SNPs) of six genes (ERCC1 rs2298881, ERCC2 rs13181 and rs1799793, XRCC1 rs25487 and rs25489, GSTP1 rs1695, GSTT1 rs2266637, and MTHFR rs1801133 and rs1801131) were genotyped, and the associations between each SNP and clinical outcome were analyzed. XRCC1 rs25487 A allele was significantly associated with progression disease (PD) to EOF (p = 0.002), and patients with AA genotype had significantly poorer progression-free survival (PFS) (p = 0.001) and overall survival (OS) (p = 0.041) compared with patients with the G allele (GG + GA). ERCC2 rs13181 G allele was significantly associated with PD (p = 0.026), and G carriers (GG + GT) tended to have poorer PFS (p = 0.092) than TT homozygotes. ERCC2 rs1799793 GA genotype was associated with unfavorable PFS (p = 0.034) and a tendency toward poorer OS (p = 0.090) compared with GG homozygotes. Patients were categorized as either good (0 risk factors) or poor risk (≥1 unfavorable SNPs) using a prognostic index based on XRCC1 rs25487 AA, ERCC2 rs13181 (GG + GT), and ERCC2 rs1799793 GA genotypes, with median OS and PFS of 534 days, 281 days (p = 0.009) and 206 days, and 123 days (p < 0.001), respectively. These results suggest that the prognostic index comprising XRCC1 rs25487, ERCC2 rs13181, and rs1799793 polymorphisms may be a useful predictor of clinical outcomes in MGC treated with EOF.


Gastric cancer EOF5 chemotherapy SNP polymorphism Overall survival Progression-free survival 



The authors thank Wenyuan Zhu and Yan Yan for their help in data selection. This work supported by the Natural Science Foundation of Shanghai (Grant No. 13ZR1408200) and Foundation of the Shanghai Municipal Science and Technology Commission (Grant No. 134119a8600).

Compliance with ethical standards

The study was conducted complying with the principles of the Helsinki Accord, and informed consent was obtained from each patient.

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.Google Scholar
  2. 2.
    Van Cutsem E, Moiseyenko VM, Tjulandin S, Majlis A, Constenla M, Boni C, et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J Clin Oncol : Off J Am Soc Clin Oncol. 2006;24(31):4991–7. doi: 10.1200/JCO.2006.06.8429.CrossRefGoogle Scholar
  3. 3.
    Weng L, Zhang L, Peng Y, Huang RS. Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy. Pharmacogenomics. 2013;14(3):315–24. doi: 10.2217/pgs.12.213.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reed E. ERCC1 and clinical resistance to platinum-based therapy. Clin Cancer Res : Off J Am Assoc Cancer Res. 2005;11(17):6100–2. doi: 10.1158/1078-0432.CCR-05-1083.CrossRefGoogle Scholar
  5. 5.
    Faivre S, Chan D, Salinas R, Woynarowska B, Woynarowski JM. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem Pharmacol. 2003;66(2):225–37.CrossRefPubMedGoogle Scholar
  6. 6.
    Weaver DA, Crawford EL, Warner KA, Elkhairi F, Khuder SA, Willey JC. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol Cancer. 2005;4(1):18. doi: 10.1186/1476-4598-4-18.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gurubhagavatula S, Liu G, Park S, Zhou W, Su L, Wain JC, et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol : Off J Am Soc Clin Oncol. 2004;22(13):2594–601. doi: 10.1200/JCO.2004.08.067.CrossRefGoogle Scholar
  8. 8.
    Abdel-Rahman SZ, El-Zein RA. The 399Gln polymorphism in the DNA repair gene XRCC1 modulates the genotoxic response induced in human lymphocytes by the tobacco-specific nitrosamine NNK. Cancer Lett. 2000;159(1):63–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4):307–20. doi: 10.1038/nrd1691.CrossRefPubMedGoogle Scholar
  10. 10.
    Goto S, Iida T, Cho S, Oka M, Kohno S, Kondo T. Overexpression of glutathione S-transferase pi enhances the adduct formation of cisplatin with glutathione in human cancer cells. Free Radic Res. 1999;31(6):549–58.CrossRefPubMedGoogle Scholar
  11. 11.
    Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22(47):7369–75. doi: 10.1038/sj.onc.1206940.CrossRefPubMedGoogle Scholar
  12. 12.
    Booton R, Ward T, Heighway J, Ashcroft L, Morris J, Thatcher N. Glutathione-S-transferase P1 isoenzyme polymorphisms, platinum-based chemotherapy, and non-small cell lung cancer. J Thoracic Oncol : Off Public Int Assoc Stud Lung Cancer. 2006;1(7):679–83.Google Scholar
  13. 13.
    Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001;22(4):195–201.CrossRefPubMedGoogle Scholar
  14. 14.
    Toffoli G, De Mattia E. Pharmacogenetic relevance of MTHFR polymorphisms. Pharmacogenomics. 2008;9(9):1195–206. doi: 10.2217/14622416.9.9.1195.CrossRefPubMedGoogle Scholar
  15. 15.
    Marcuello E, Altes A, Menoyo A, Rio ED, Baiget M. Methylenetetrahydrofolate reductase gene polymorphisms: genomic predictors of clinical response to fluoropyrimidine-based chemotherapy? Cancer Chemother Pharmacol. 2006;57(6):835–40. doi: 10.1007/s00280-005-0089-1.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Z, Chen JQ, Liu JL, Qin XG, Huang Y. Polymorphisms in ERCC1, GSTs, TS and MTHFR predict clinical outcomes of gastric cancer patients treated with platinum/5-Fu-based chemotherapy: a systematic review. BMC Gastroenterol. 2012;12:137. doi: 10.1186/1471-230X-12-137.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang ZH, Hua D, Li LH. The polymorphisms of TS and MTHFR predict survival of gastric cancer patients treated with fluorouracil-based adjuvant chemotherapy in Chinese population. Cancer Chemother Pharmacol. 2009;63(5):911–8. doi: 10.1007/s00280-008-0815-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72. doi: 10.1006/mgme.1998.2714.CrossRefPubMedGoogle Scholar
  19. 19.
    Geng R, Chen Z, Zhao X, Qiu L, Liu X, Liu R, et al. Oxidative stress-related genetic polymorphisms are associated with the prognosis of metastatic gastric cancer patients treated with epirubicin, oxaliplatin and 5-fluorouracil combination chemotherapy. PLoS One. 2014;9(12):e116027. doi: 10.1371/journal.pone.0116027.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8. doi: 10.1038/ Scholar
  21. 21.
    Tregouet DA, Garelle V. A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies. Bioinformatics. 2007;23(8):1038–9. doi: 10.1093/bioinformatics/btm058.CrossRefPubMedGoogle Scholar
  22. 22.
    Lu ZM, Luo TH, Nie MM, Fang GE, Ma LY, Xue XC, et al. Influence of ERCC1 and ERCC4 polymorphisms on response to prognosis in gastric cancer treated with FOLFOX-based chemotherapy. Tumour Biol : J Int Soc Oncodev Biol Med. 2014;35(4):2941–8. doi: 10.1007/s13277-013-1378-7.CrossRefGoogle Scholar
  23. 23.
    Huang ZH, Hua D, Du X. Polymorphisms in p53, GSTP1 and XRCC1 predict relapse and survival of gastric cancer patients treated with oxaliplatin-based adjuvant chemotherapy. Cancer Chemother Pharmacol. 2009;64(5):1001–7. doi: 10.1007/s00280-009-0956-2.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu B, Wei J, Zou Z, Qian X, Nakamura T, Zhang W, et al. Polymorphism of XRCC1 predicts overall survival of gastric cancer patients receiving oxaliplatin-based chemotherapy in Chinese population. Europ J Human Genet : EJHG. 2007;15(10):1049–53. doi: 10.1038/sj.ejhg.5201884.CrossRefGoogle Scholar
  25. 25.
    Xu J, Ma J, Zong HT, Wang SY, Zhou JW. Pharmacogenetic role of XRCC1 polymorphisms on the clinical outcome of gastric cancer patients with platinum-based chemotherapy: a systematic review and meta-analysis. Genet Molec Res : GMR. 2014;13(1):1438–46. doi: 10.4238/2014.March.6.2.CrossRefGoogle Scholar
  26. 26.
    Sacerdote C, Guarrera S, Ricceri F, Pardini B, Polidoro S, Allione A, et al. Polymorphisms in the XRCC1 gene modify survival of bladder cancer patients treated with chemotherapy. Int J Cancer J Int Cancer. 2013;133(8):2004–9. doi: 10.1002/ijc.28186.CrossRefGoogle Scholar
  27. 27.
    Banescu C, Duicu C, Trifa AP, Dobreanu M. XRCC1 Arg194Trp and Arg399Gln polymorphisms are significantly associated with shorter survival in acute myeloid leukemia. Leukemia Lymp. 2014;55(2):365–70. doi: 10.3109/10428194.2013.802781.CrossRefGoogle Scholar
  28. 28.
    Lunn RM, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, et al. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis. 2000;21(4):551–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Yin M, Yan J, Martinez-Balibrea E, Graziano F, Lenz HJ, Kim HJ, et al. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysis. Clin Cancer Res : Off J Am Assoc Cancer Res. 2011;17(6):1632–40. doi: 10.1158/1078-0432.CCR-10-2169.CrossRefGoogle Scholar
  30. 30.
    Giovannetti E, Pacetti P, Reni M, Leon LG, Mambrini A, Vasile E, et al. Association between DNA-repair polymorphisms and survival in pancreatic cancer patients treated with combination chemotherapy. Pharmacogenomics. 2011;12(12):1641–52. doi: 10.2217/pgs.11.109.CrossRefPubMedGoogle Scholar
  31. 31.
    Chu H, Gu D, Xu M, Xu Z, Gong Y, Gong W, et al. A genetic variant in ERCC2 is associated with gastric cancer prognosis in a Chinese population. Mutagenesis. 2013;28(4):441–6. doi: 10.1093/mutage/get023.CrossRefPubMedGoogle Scholar
  32. 32.
    Li Y, Liu Z, Liu H, Wang LE, Tan D, Ajani JA, et al. ERCC1 and ERCC2 variants predict survival in gastric cancer patients. PLoS One. 2013;8(9):e71994. doi: 10.1371/journal.pone.0071994.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Qiu M, Yang X, Hu J, Ding X, Jiang F, Yin R, et al. Predictive value of XPD polymorphisms on platinum-based chemotherapy in non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2013;8(8):e72251. doi: 10.1371/journal.pone.0072251.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ruzzo A, Graziano F, Kawakami K, Watanabe G, Santini D, Catalano V, et al. Pharmacogenetic profiling and clinical outcome of patients with advanced gastric cancer treated with palliative chemotherapy. J Clin Oncol : Off J Am Soc Clin Oncol. 2006;24(12):1883–91. doi: 10.1200/JCO.2005.04.8322.CrossRefGoogle Scholar
  35. 35.
    Xu Z, Zhu H, Luk JM, Wu D, Gu D, Gong W, et al. Clinical significance of SOD2 and GSTP1 gene polymorphisms in Chinese patients with gastric cancer. Cancer. 2012;118(22):5489–96. doi: 10.1002/cncr.27599.CrossRefPubMedGoogle Scholar
  36. 36.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3. doi: 10.1038/ng0595-111.CrossRefPubMedGoogle Scholar
  37. 37.
    Yu H, Wu X, Zhang Y, Jin Z, Li G, Zhao H. Genetic variability of DNA repair mechanisms influences chemotherapy outcome of gastric cancer. Int J Clin Experiment Pathol. 2015;8(4):4106–12.Google Scholar
  38. 38.
    Chu HY, Gu DY, Xu M, Xu Z, Gong YL, Gong WD, et al. A genetic variant in ERCC2 is associated with gastric cancer prognosis in a Chinese population. Mutagenesis. 2013;28(4):441–6. doi: 10.1093/Mutage/Get023.CrossRefPubMedGoogle Scholar
  39. 39.
    Hu ZB, Ma HX, Chen F, Wei QY, Shen HB. XRCC1 polymorphisms and cancer risk: a meta-analysis of 38 case–control studies. Cancer Epidem Biomar. 2005;14(7):1810–8. doi: 10.1158/1055-9965.Epi-04-0793.CrossRefGoogle Scholar
  40. 40.
    Li GN, Li XM, Liu YQ, Bao ZQ, Yang LX, Wang X, et al. Association between glutathione S-transferases M1 and T1 gene polymorphisms and esophageal cancer prognosi. Int J Clin Experiment Med. 2015;8(3):3300–8.Google Scholar
  41. 41.
    Cecchin E, Perrone G, Nobili S, Polesel J, De Mattia E, Zanusso C, et al. MTHFR-1298 A > C (rs1801131) is a predictor of survival in two cohorts of stage II/III colorectal cancer patients treated with adjuvant fluoropyrimidine chemotherapy with or without oxaliplatin. Pharmacogenom J. 2015;15(3):219–25. doi: 10.1038/tpj.2014.64.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Rujiao Liu
    • 1
    • 2
  • Xiaoying Zhao
    • 1
    • 2
  • Xin Liu
    • 1
    • 2
  • Zhiyu Chen
    • 1
    • 2
  • Lixin Qiu
    • 1
    • 2
  • Ruixuan Geng
    • 1
    • 2
  • Weijian Guo
    • 1
    • 2
  • Guang He
    • 3
    • 4
  • Jiliang Yin
    • 1
    • 2
  • Jin Li
    • 1
    • 2
  • Xiaodong Zhu
    • 1
    • 2
  1. 1.Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPeople’s Republic of China
  3. 3.Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiChina
  4. 4.Institute for Nutritional Sciences, Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina

Personalised recommendations