Tumor Biology

, Volume 37, Issue 5, pp 6485–6491 | Cite as

Downregulation of pyrroline-5-carboxylate reductase-2 induces the autophagy of melanoma cells via AMPK/mTOR pathway

  • Rongying Ou
  • Xueqi Zhang
  • Jianfeng Cai
  • Xiaohong Shao
  • Mingfen Lv
  • Wei Qiu
  • Xuan Xuan
  • Jingjing Liu
  • Zhiming Li
  • Yunsheng Xu
Original Article

Abstract

Melanoma is the most aggressive form of skin cancer and causes 50,000 deaths annually worldwide. The roles of proline-dependent process and autophagy have both been reported in studies on melanoma. In the present study, we focused on the effect of pyrroline-5-carboxylate reductase-2 (PYCR2) on inducing autophagy process in melanoma. The expression of PYCR2 was regulated by an RNAi technique, and the cell proliferation of A375 cell line was determined by methyl thiazolyl tetrazolium test; the effect of PYCR2 on the apoptosis process and AMPK/mTOR pathway was evaluated by flow cytometry assay and Western blot. It was found that silence of PYCR2 resulted in the decrease of proliferative ability and activation of AMPK/mTOR-induced autophagy of A375 cells. PYCR2 silencing also activated AMPK/mTOR pathway in another melanoma cell line, CHL-1. However, the overexpression of PYCR2 seemed to make no difference to the cell viability and targeted pathway. Our results offered a preliminary illustration on the mechanism of the PYCR2-dependent autophagy and showed that PYCR2 was a potential therapeutic target of melanoma.

Keywords

Melanoma Pyrroline-5-carboxylate reductase-2 AMPK/mTOR Autophagy 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81272987, 81373075, 81371748).

Supplementary material

13277_2015_3927_MOESM1_ESM.docx (15 kb)
Table S1 (DOCX 15 kb)
13277_2015_3927_MOESM2_ESM.docx (16 kb)
Table S2 (DOCX 15 kb)
13277_2015_3927_MOESM3_ESM.docx (15 kb)
Table S3 (DOCX 15 kb)
13277_2015_3927_MOESM4_ESM.docx (16 kb)
Table S4 (DOCX 15 kb)

References

  1. 1.
    Foletto MC, Haas SE. Cutaneous melanoma: new advances in treatment. An Bras Dermatol. 2014;89(2):301–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Naser N. Cutaneous melanoma: a 30-year-long epidemiological study conducted in a city in southern Brazil, from 1980–2009. An Bras Dermatol. 2011;86(5):932–41.CrossRefPubMedGoogle Scholar
  3. 3.
    Corazzari M, Fimia GM, Lovat P, Piacentini M, editors. Why is autophagy important for melanoma? Molecular mechanisms and therapeutic implications 2013: Elsevier.Google Scholar
  4. 4.
    Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445(7130):851–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26(11):1131–55.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rastrelli M, Tropea S, Pigozzo J, Bezzon E, Campana LG, Stramare R, et al. Melanoma m1: diagnosis and therapy. In vivo. 2014;28(3):273–85.PubMedGoogle Scholar
  7. 7.
    Balch CM, Gershenwald JE, S-j S, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199–206.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18(1):158–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Roomi MW, Ivanov V, Netke S, Kalinovsky T, Niedzwiecki A, Rath M. In vivo and in vitro antitumor effect of ascorbic acid, lysine, proline and green tea extract on human melanoma cell line A2058. In vivo. 2006;20(1):25–32.PubMedGoogle Scholar
  11. 11.
    Rath M, Pauling L. Plasmin-induced proteolysis and the role of apoprotein (a), lysine and synthetic lysine analogs. J Orthomolecular Med. 1992;7(1):17–23.Google Scholar
  12. 12.
    Phang JM, Donald SP, Pandhare J, Liu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids. 2008;35(4):681–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Hersey P, Zhang XD. Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell & melanoma Res. 2008;21(3):358–67.CrossRefGoogle Scholar
  14. 14.
    Lazova R, Klump V, Pawelek J. Autophagy in cutaneous malignant melanoma. J Cutan Pathol. 2010;37(2):256–68.CrossRefPubMedGoogle Scholar
  15. 15.
    Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res. 2012;18(2):370–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Fernández-Barral A, Orgaz JL, Gomez V, Del Peso L, Calzada MJ, Jiménez B. Hypoxia negatively regulates antimetastatic PEDF in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism. PLoS One. 2012;7(3), e32989.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lau WS, Chen WF, Chan RYK, Guo DA, Wong MS. Mitogen‐activated protein kinase (MAPK) pathway mediates the oestrogen‐like activities of ginsenoside Rg1 in human breast cancer (MCF‐7) cells. Br J Pharmacol. 2009;156(7):1136–46.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, et al. utophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010;285(14):10850–61. doi: 10.1074/jbc.M109.080796.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    De Ingeniis J, Ratnikov B, Richardson AD, Scott DA, Aza-Blanc P, De SK, et al. Functional specialization in proline biosynthesis of melanoma. PLoS One. 2012;7(9), e45190.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schwartz LM, Smith SW, Jones ME, Osborne BA. Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci. 1993;90(3):980–4.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;12:1542–52.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin Z-H, Ravikumar B, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1(1):11–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med. 2008;44(4):671–81. doi: 10.1016/j.freeradbiomed.2007.10.054.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang L, Alfano JR, Becker DF. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli. J Bacteriol. 2015;197(3):431–40. doi: 10.1128/JB.02282-14.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Di Stasi D, Vallacchi V, Campi V, Ranzani T, Daniotti M, Chiodini E, et al. DHCR24 gene expression is upregulated in melanoma metastases and associated to resistance to oxidative stress-induced apoptosis. Int J Cancer. 2005;115(2):224–30. doi: 10.1002/ijc.20885.CrossRefPubMedGoogle Scholar
  26. 26.
    Cotter MA, Thomas J, Cassidy P, Robinette K, Jenkins N, Florell SR, et al. N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of ultraviolet-induced melanoma in mice. Clin Cancer Res. 2007;13(19):5952–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32(1):2–11.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Meley D, Bauvy C, Houben-Weerts JHPM, Dubbelhuis PF, Helmond MTJ, Codogno P, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem. 2006;281(46):34870–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Miracco C, Cevenini G, Franchi A, Luzi P, Cosci E, Mourmouras V, et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol. 2010;41(4):503–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal. 2000;19(21):5720–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H. mTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287–95.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004;36(12):2491–502.CrossRefPubMedGoogle Scholar
  35. 35.
    Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Rongying Ou
    • 1
  • Xueqi Zhang
    • 2
  • Jianfeng Cai
    • 2
  • Xiaohong Shao
    • 2
  • Mingfen Lv
    • 2
  • Wei Qiu
    • 2
  • Xuan Xuan
    • 2
  • Jingjing Liu
    • 2
  • Zhiming Li
    • 2
  • Yunsheng Xu
    • 2
  1. 1.Department of Gynaecology and ObstetricsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  2. 2.Department of Dermatovenerology, the First Affiliated Hospital of Wenzhou Medical University; Institute of DermatovenerologyWenzhou Medical UniversityWenzhouChina

Personalised recommendations