Tumor Biology

, Volume 37, Issue 2, pp 1707–1714 | Cite as

CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) and P53 mutation pattern in sporadic colorectal cancer

  • Rania Abdelmaksoud-Dammak
  • Amena Saadallah-Kallel
  • Imen Miladi-Abdennadher
  • Lobna Ayedi
  • Abdelmajid Khabir
  • Tahia Sallemi-Boudawara
  • Mounir Frikha
  • Jamel Daoud
  • Raja Mokdad-Gargouri
Original Article


The ubiquitin-proteasome system plays an essential regulatory role in various cellular processes. Besides its involvement in normal cellular functions, the alteration of proteasomal activity contributes to the pathological states of several clinical disorders, including cancer. Aberrant methylation of the CpG islands has been reported as an alternative way to inactivate gene expression involved in the ubiquitination process and thus protein degradation in tumor tissues. In this study, we aimed to determine the CpG methylation pattern of the UCHL1 promoter, as well as the mutation spectrum and the expression pattern of P53 in sporadic colorectal cancer (CRC) from Tunisian patients. We found that UCHL1 was methylated in 68.57 % and correlated significantly with lymph node metastasis (P = 0.029) and transcriptional silencing in tumor tissues (P = 0.013). Mutation screening of exons 5–9 of P53 showed that 42.85 % of cases harbor somatic mutation and are positively correlated with the methylated pattern of UCHL1 (P = 0.001). Furthermore, cytoplasmic accumulation of P53 was strongly associated with the unmethylated UCHL1 profile (P = 0.006), supporting the relationship between these two proteins in CRC.


UCHL1 CpG methylation Colon cancer Transcriptional silencing P53 



This work was supported by a grant from the Tunisian Ministry of Higher Education and Scientific Research. We thank the technician from the “Department of Analysis-CBS” for DNA sequencing.

Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62:10–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Hsairi M, Ben FR, Abdallah M, Jlidi R, Sellami A, Zheni S, et al. Assessment of cancer in Tunisia. Tunis Med. 2002;80:57–64.PubMedGoogle Scholar
  3. 3.
    Smith RA, Cokkinides V, Eyre HJ. American Cancer Society guidelines for the early detection of cancer. CA Cancer J Clin. 2006;56:11–25.CrossRefPubMedGoogle Scholar
  4. 4.
    Chung DC. The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology. 2000;119:854–65.CrossRefPubMedGoogle Scholar
  5. 5.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1:55–67.CrossRefPubMedGoogle Scholar
  7. 7.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Med. 2004;23:29–39.Google Scholar
  9. 9.
    Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction. Nat Rev Cancer. 2006;6:107–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Hibi K, Westra WH, Borges M, Goodman S, Sidransky D, Jen J. PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. Am J Pathol. 1999;155:711–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yamazaki T, Hibi K, Takase T, Tezel E, Nakayama H, Kasai Y, et al. PGP9.5 as a marker for invasive colorectal cancer. Clin Cancer Res. 2002;8:192–5.PubMedGoogle Scholar
  12. 12.
    Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol. 2005;23:4776–89.CrossRefPubMedGoogle Scholar
  13. 13.
    Frezza M, Schmitt S, Dou QP. Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr Top Med Chem. 2011;11(23):2888–905.CrossRefPubMedGoogle Scholar
  14. 14.
    Sacco JJ, Coulson JM, Clague MJ, Urbé S. Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life. 2010;62(2):140–57.PubMedGoogle Scholar
  15. 15.
    Hibi K, Liu Q, Beaudry GA, Madden SL, Westra WH, Wehage SL, et al. Serial analysis of gene expression in non-small cell lung cancer. Cancer Res. 1998;58:5690–4.PubMedGoogle Scholar
  16. 16.
    Liu X, Zeng B, Ma J, Wan C. Comparative proteomic analysis of osteosarcoma cell and human primary cultured osteoblastic cell. Cancer Invest. 2009;27:345–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Takase T, Hibi K, Yamazaki T, Nakayama H, Taguchi M, Kasai Y, et al. PGP9.5 overexpression in esophageal squamous cell carcinoma. Hepatogastroenterology. 2003;50:1278–80.PubMedGoogle Scholar
  18. 18.
    Tezel E, Hibi K, Nagasaka T, Nakao A. PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res. 2000;6:4764–7.PubMedGoogle Scholar
  19. 19.
    Lee YM, Lee JY, Kim MJ, Bae HI, Park JY, Kim SG, et al. Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features. Cancer Sci. 2006;97:1205–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Sato F, Meltzer SJ. CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer. 2006;106:483–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Mandelker DL, Yamashita K, Tokumaru Y, Mimori K, Howard DL, Tanaka Y, et al. PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res. 2005;65:4963–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Ko JL, Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10:1054–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Levine JA. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.CrossRefPubMedGoogle Scholar
  24. 24.
    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28:622–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Iacopetta B. TP53 mutation in colorectal cancer. Hum Mutat. 2003;21:271–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Li L, Tao Q, Jin H, van Hasselt A, Poon FF, Wang X, et al. The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res. 2010;16(11):2949–58.CrossRefPubMedGoogle Scholar
  27. 27.
    Trifa F, Karray-Chouayekh S, Jmaa ZB, Jmal E, Khabir A, Sellami-Boudawara T, et al. Frequent CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in sporadic and hereditary Tunisian breast cancer patients: clinical significance. Med Oncol. 2013;30(1):418.CrossRefPubMedGoogle Scholar
  28. 28.
    Sambrook J, Russell DW. Molecular cloning. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001. p. 6–4.Google Scholar
  29. 29.
    Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Miladi-Abdennadher I, Abdelmaksoud-Damak R, Ayadi L, Khabir A, Amouri A, Frikha F, et al. Expression of p16INK4a, alone or combined with p53, is predictive of better prognosis in colorectal adenocarcinoma in Tunisian patients. Appl Immunohistochem Mol Morphol. 2011;19(6):562–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Xu XL, Yu J, Zhang HY, Sun MH, Gu J, Du X, et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol. 2004;10:3441–54.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ, et al. Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. 2009;28:117–27.CrossRefPubMedGoogle Scholar
  34. 34.
    Leiblich A, Cross SS, Catto JW, Pesce G, Hamdy FC, Rehman I. Human prostate cancer cells express neuroendocrine cell markers PGP 9.5 and chromogranin A. Prostate. 2007;67:1761–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Okochi-Takada E, Nakazawa K, Wakabayashi M, Mori A, Ichimura S, Yasugi T, et al. Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int J Cancer. 2006;119(6):1338–44.CrossRefPubMedGoogle Scholar
  36. 36.
    Yu J, Tao Q, Cheung KF, Jin H, Poon FF, Wang X, et al. Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology. 2008;48:508–18.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhong J, Zhao M, Ma Y, Luo Q, Liu J, Wang J, et al. UCHL1 acts as a colorectal cancer oncogene via activation of the β-catenin/TCF pathway through its deubiquitinating activity. Int J Mol Med. 2012;30(2):430–6.PubMedGoogle Scholar
  38. 38.
    Yamazaki T, Hibi K, Takase T, Tezel E, Nakayama H, Kasai Y, et al. PGP9.5 as a marker for invasive colorectal cancer. Clin Cancer Res. 2002;8(1):192–5.PubMedGoogle Scholar
  39. 39.
    Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Momand J, Wu HH, Dasgupta G. MDM2—master regulator of the p53 tumor suppressor protein. Gene. 2000;242:15–29.CrossRefPubMedGoogle Scholar
  41. 41.
    Xiang T, Li L, Yin X, Yuan C, Tan C, Su X, et al. The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS One. 2012;7(1), e29783.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Soussi T, Dehouche K, Beroud C. p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum Mutat. 2000;15:105–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Soussi T, Beroud C. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat. 2003;21:192–200.CrossRefPubMedGoogle Scholar
  44. 44.
    Tominaga T, Iwahashi M, Takifuji K, Hotta T, Yokoyama S, Matsuda K, et al. Combination of p53 codon 72 polymorphism and inactive p53 mutation predicts chemosensitivity to 5-fluorouracil in colorectal cancer. Int J Cancer. 2010;126:1691–701.PubMedGoogle Scholar
  45. 45.
    Chaar I, Ounissi D, Boughriba R, Ben Ammar A, Sameh A, Khalfallah T, et al. Implication of K-ras and p53 in colorectal cancer carcinogenesis in Tunisian population cohort. Tumour Biol. 2014;35(7):7163–75.CrossRefGoogle Scholar
  46. 46.
    Aissi S, Buisine MP, Zerimech F, Kourda N, Moussa A, Manai M, et al. TP53 mutations in colorectal cancer from Tunisia: relationships with site of tumor origin, microsatellite instability and KRAS mutations. Mol Biol Rep. 2014;41(3):1807–13.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Rania Abdelmaksoud-Dammak
    • 1
  • Amena Saadallah-Kallel
    • 1
  • Imen Miladi-Abdennadher
    • 1
  • Lobna Ayedi
    • 2
  • Abdelmajid Khabir
    • 2
  • Tahia Sallemi-Boudawara
    • 2
  • Mounir Frikha
    • 3
  • Jamel Daoud
    • 4
  • Raja Mokdad-Gargouri
    • 1
  1. 1.Center of Biotechnology of Sfax, Laboratory of Biomass Valorisation and Production of Eukaryotic ProteinsUniversity of SfaxSfaxTunisia
  2. 2.Department of AnatomopathologyHabib Bourguiba HospitalSfaxTunisia
  3. 3.Department of Medical OncologyHabib Bourguiba HospitalSfaxTunisia
  4. 4.Department of RadiotherapyHabib Bourguiba HospitalSfaxTunisia

Personalised recommendations