Tumor Biology

, Volume 37, Issue 1, pp 1189–1195 | Cite as

Expression of eukaryotic translation initiation factor 5A-2 (eIF5A-2) associated with poor survival in gastric cancer

Original Article

Abstract

Altered expression of eukaryotic translation initiation factor 5A-2 (eIF5A-2) was associated with human carcinogenesis and progression. This study assessed eIF5A-2 expression in gastric cancer tissues for association with clinicopathological parameters and survival of patients. A total of 436 gastric cancer tissues and 92 normal mucosal blocks were collected for construction of tissue microarrays and immunohistochemical assessment of eIF5A-2 expression. The data were statistically analyzed for association with clinicopathological factors and survival of patients. Immunohistochemical data showed that eIF5A-2 protein was highly expressed in gastric cancer tissues (p < 0.001). Upregulated expression of eIF5A-2 protein was associated with tumor Lauren classification, size, location, invasion, TNM stages, and lymph node and distant metastases. The 3- and 5-year cumulative survival rates of these 436 patients were 88.5 and 58.1 %, respectively. In contrast, the mean survival time of patients with increased tumor eIF5A-2 was 30.22 ± 1.23 vs. 51.29 ± 0.86 months for those with low tumor eIF5A-2 (p < 0.001). Multivariate analysis showed that eIF5A-2 expression and related tumor parameters were independent indicators of overall survival in gastric cancer patients. In conclusion, the current study indicates that overexpression of eIF5A-2 protein was associated with poor overall survival of gastric cancer patients.

Keywords

Gastric cancer Immunohistochemical eIF5A-2 Prognosis 

Notes

Acknowledgments

This study was supported in part by grants from the Zhejiang Provincial Department of Science and Technology Research Foundation (no. 2008C33040) and the Zhejiang Provincial Medical Science Research Foundation (no. 2007A013). The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; and in the decision to publish the results.

Compliance with ethical standards

Conflicts of interest

None

Research involving human participants and/or animals

This study was approved by the Ethical Committee of Zhejiang Provincial People’s Hospital.

Informed consent

Written informed consent for use of the resected samples was obtained from each patient.

References

  1. 1.
    Levi F, Lucchini F, Negri E, La Vecchia C. Trends in mortality from major cancers in the European Union, including acceding countries, in 2004. Cancer. 2004;101(12):2843–50. doi: 10.1002/cncr.20666.CrossRefPubMedGoogle Scholar
  2. 2.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.CrossRefPubMedGoogle Scholar
  3. 3.
    Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12(3):354–62.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
  5. 5.
    Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, et al. Treatment of gastric cancer. World J Gastroenterol. 2014;20(7):1635–49. doi: 10.3748/wjg.v20.i7.1635.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sant M, Aareleid T, Berrino F, Bielska Lasota M, Carli PM, Faivre J, et al. EUROCARE-3: survival of cancer patients diagnosed 1990–94—results and commentary. Ann Oncol. 2003;14 Suppl 5:v61–118.CrossRefPubMedGoogle Scholar
  7. 7.
    Grabsch HI, Tan P. Gastric cancer pathology and underlying molecular mechanisms. Dig Surg. 2013;30(2):150–8. doi: 10.1159/000350876.CrossRefPubMedGoogle Scholar
  8. 8.
    Li J, Davies BR, Han S, Zhou M, Bai Y, Zhang J, et al. The AKT inhibitor AZD5363 is selectively active in PI3KCA mutant gastric cancer, and sensitizes a patient-derived gastric cancer xenograft model with PTEN loss to Taxotere. J Transl Med. 2013;11:241. doi: 10.1186/1479-5876-11-241.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JW. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1991;11(6):3105–14.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Park MH. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem. 2006;139(2):161–9. doi: 10.1093/jb/mvj034.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Clement PM, Johansson HE, Wolff EC, Park MH. Differential expression of eIF5A-1 and eIF5A-2 in human cancer cells. Febs J. 2006;273(6):1102–14. doi: 10.1111/j.1742-4658.2006.05135.x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Clement PM, Henderson CA, Jenkins ZA, Smit-McBride Z, Wolff EC, Hershey JW, et al. Identification and characterization of eukaryotic initiation factor 5A-2. Eur J Biochem. 2003;270(21):4254–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Jenkins ZA, Haag PG, Johansson HE. Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Genomics. 2001;71(1):101–9. doi: 10.1006/geno.2000.6418.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen W, Luo JH, Hua WF, Zhou FJ, Lin MC, Kung HF, et al. Overexpression of EIF-5A2 is an independent predictor of outcome in patients of urothelial carcinoma of the bladder treated with radical cystectomy. Cancer Epidemiol Biomarkers Prev. 2009;18(2):400–8. doi: 10.1158/1055-9965.EPI-08-0754.CrossRefPubMedGoogle Scholar
  15. 15.
    Gosslau A, Jao DL, Butler R, Liu AY, Chen KY. Thermal killing of human colon cancer cells is associated with the loss of eukaryotic initiation factor 5A. J Cell Physiol. 2009;219(2):485–93. doi: 10.1002/jcp.21696.CrossRefPubMedGoogle Scholar
  16. 16.
    Guan XY, Sham JS, Tang TC, Fang Y, Huo KK, Yang JM. Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancer. Cancer Res. 2001;61(9):3806–9.PubMedGoogle Scholar
  17. 17.
    Lee HS, Cho SB, Lee HE, Kim MA, Kim JH, do Park J, et al. Protein expression profiling and molecular classification of gastric cancer by the tissue array method. Clin Cancer Res. 2007;13(14):4154–63. doi: 10.1158/1078-0432.CCR-07-0173.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee HS, Lee HK, Kim HS, Yang HK, Kim WH. Tumour suppressor gene expression correlates with gastric cancer prognosis. J Pathol. 2003;200(1):39–46. doi: 10.1002/path.1288.CrossRefPubMedGoogle Scholar
  19. 19.
    Geisler SA, Olshan AF, Weissler MC, Cai J, Funkhouser WK, Smith J, et al. p16 and p53 protein expression as prognostic indicators of survival and disease recurrence from head and neck cancer. Clin Cancer Res. 2002;8(11):3445–53.PubMedGoogle Scholar
  20. 20.
    Song LB, Liao WT, Mai HQ, Zhang HZ, Zhang L, Li MZ, et al. The clinical significance of twist expression in nasopharyngeal carcinoma. Cancer Lett. 2006;242(2):258–65. doi: 10.1016/j.canlet.2005.11.013.CrossRefPubMedGoogle Scholar
  21. 21.
    Wu HH, Lin WC, Tsai KW. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev Mol Med. 2014;16, e1. doi: 10.1017/erm.2013.16.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003;4(8):657–65. doi: 10.1038/nrm1175.CrossRefPubMedGoogle Scholar
  23. 23.
    Kawakami H, Okamoto I, Arao T, Okamoto W, Matsumoto K, Taniguchi H, et al. MET amplification as a potential therapeutic target in gastric cancer. Oncotarget. 2013;4(1):9–17.PubMedGoogle Scholar
  24. 24.
    Tang DJ, Dong SS, Ma NF, Xie D, Chen L, Fu L, et al. Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology. 2010;51(4):1255–63. doi: 10.1002/hep.23451.CrossRefPubMedGoogle Scholar
  25. 25.
    Hu L, Wen JM, Sham JS, Wang W, Xie D, Tjia WM, et al. Establishment of cell lines from a primary hepatocellular carcinoma and its metastatis. Cancer Genet Cytogenet. 2004;148(1):80–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A, et al. Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res. 1997;57(12):2331–5.PubMedGoogle Scholar
  27. 27.
    Shek FH, Fatima S, Lee NP. Implications of the use of eukaryotic translation initiation factor 5A (eIF5A) for prognosis and treatment of hepatocellular carcinoma. Int J Hepatol. 2012;2012:760928. doi: 10.1155/2012/760928.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Xie D, Ma NF, Pan ZZ, Wu HX, Liu YD, Wu GQ, et al. Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma. Hum Pathol. 2008;39(1):80–6. doi: 10.1016/j.humpath.2007.05.011.CrossRefPubMedGoogle Scholar
  29. 29.
    Yang GF, Xie D, Liu JH, Luo JH, Li LJ, Hua WF, et al. Expression and amplification of eIF-5A2 in human epithelial ovarian tumors and overexpression of EIF-5A2 is a new independent predictor of outcome in patients with ovarian carcinoma. Gynecol Oncol. 2009;112(2):314–8. doi: 10.1016/j.ygyno.2008.10.024.CrossRefPubMedGoogle Scholar
  30. 30.
    Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell. 2008;135(5):852–64. doi: 10.1016/j.cell.2008.09.061.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee NP, Tsang FH, Shek FH, Mao M, Dai H, Zhang C, et al. Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J Cancer. 2010;127(4):968–76. doi: 10.1002/ijc.25100.PubMedGoogle Scholar
  32. 32.
    He LR, Zhao HY, Li BK, Liu YH, Liu MZ, Guan XY, et al. Overexpression of eIF5A-2 is an adverse prognostic marker of survival in stage I non-small cell lung cancer patients. Int J Cancer. 2011;129(1):143–50. doi: 10.1002/ijc.25669.CrossRefPubMedGoogle Scholar
  33. 33.
    Marchet A, Mocellin S, Belluco C, Ambrosi A, DeMarchi F, Mammano E, et al. Gene expression profile of primary gastric cancer: towards the prediction of lymph node status. Ann Surg Oncol. 2007;14(3):1058–64. doi: 10.1245/s10434-006-9090-0.CrossRefPubMedGoogle Scholar
  34. 34.
    Xu GD, Shi XB, Sun LB, Zhou QY, Zheng DW, Shi HS, et al. Down-regulation of eIF5A-2 prevents epithelial-mesenchymal transition in non-small-cell lung cancer cells. J Zhejiang Univ Sci B. 2013;14(6):460–7. doi: 10.1631/jzus.B1200200.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhu W, Cai MY, Tong ZT, Dong SS, Mai SJ, Liao YJ, et al. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response tochemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 2014;5(16):6716–33.CrossRefGoogle Scholar
  36. 36.
    Khosravi S, Wong RP, Ardekani GS, Zhang G, Martinka M, Ong CJ, et al. Role of EIF5A2, a downstream target of Akt, in promoting melanoma cell invasion. Br J Cancer. 2014;110(2):399–408. doi: 10.1038/bjc.2013.688.CrossRefPubMedGoogle Scholar
  37. 37.
    Wei JH, Cao JZ, Zhang D, Liao B, Zhong WM, Lu J, et al. EIF5A2 predicts outcome in localised invasive bladder cancer and promotes bladder cancer cellaggressiveness in vitro and in vivo. Br J Cancer. 2014;110(7):1767–77. doi: 10.1038/bjc.2014.52.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chen M, Huang JD, Deng HK, Dong S, Deng W, Tsang SL,et al. Overexpression of eIF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability. BMC Cancer. 2011;11:199. doi: 10.1186/1471-2407-11-199.

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Wenzhou Medical UniversityWenzhouChina
  2. 2.Department of Gastrointestinal SurgeryZhejiang Provincial People’s HospitalHangzhouChina

Personalised recommendations