Advertisement

Tumor Biology

, Volume 37, Issue 1, pp 1061–1069 | Cite as

Polymorphisms in epidermal growth factor receptor (EGFR) and AKT1 as possible predictors of clinical outcome in advanced non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitors

  • Xiaoqing Zhang
  • Junwei Fan
  • Yuping Li
  • Shengtao Lin
  • Ping Shu
  • Jian Ni
  • Shengying Qin
  • Zhemin Zhang
Original Article

Abstract

This study aimed to investigate the association of epidermal growth factor receptor (EGFR) gene polymorphism and AKT1 polymorphism with the clinical outcomes in advanced non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (EGFR-TKIs). The clinical outcome and the survival of NSCLC of 230 patients after treatment with EGFR-TKIs were measured. The rs712829, rs1468727 of the EGFR gene and rs1130214 of the AKT1 gene from peripheral blood cell were detected by a multiplexed single nucleotide polymorphism (SNP) MassEXTEND assay. The relationship between genetic polymorphisms and clinical outcomes of treatment with EGFR-TKIs was analyzed. The response rates and the disease control rate of patients with genotype GG, GT, and TT in EGFR rs712829 were statistically very significant difference(19.7 vs 36.1 vs 50.0 %, P = 0.016 and 57.7 vs 77.8 vs 83.3 %, P = 0.026, respectively). Better disease control was also achieved in patients with the GG genotype of AKT1 rs1130214 than those with the GT and TT genotypes (65.6 vs. 48.7 %, P = 0.043). Patients carrying the EGFR rs712829 TT genotype had significantly longer PFS and OS than those with the GT or GG genotypes (9.0 vs. 7.0 vs. 5.0 months, P = 0.001 and 13.1 vs. 14.6 vs. 18.8 months, P = 0.008, respectively). In addition, patients carrying the AKT1 rs1130214 GG genotype also had significantly longer PFS than those with the GT and TT genotypes (5.5 vs. 4.5 months, P = 0.008). EGFR rs712829 polymorphism and AKT1 rs1130214 could influence the response to EGFR-TKIs therapy in patients with advanced NSCLC.

Keywords

Polymorphism Lung cancer EGFR tyrosine kinase inhibitor 

Notes

Acknowledgments

This research was supported by the Natural Science Foundation of the People’s Republic of China (no. 81202609) and the Tumor Pharmacy Foundation of Shanghai Pharmaceutical Association (no. 2010-YY-01-04; no. 2009-YY-01-18).

Conflicts of interest

None

References

  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Bar J, Cyjon A, Flex D, Sorotsky H, Biran H, Dudnik J, et al. EGFR mutation testing practice in advanced non-small cell lung cancer. Lung. 2014;192:759–63.CrossRefPubMedGoogle Scholar
  4. 4.
    Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol. 2014;90:197–207.CrossRefPubMedGoogle Scholar
  5. 5.
    Pallis AG, Syrigos KN. Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of NSCLC. Lung Cancer. 2013;80:120–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus standard Chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;3:239–46.Google Scholar
  7. 7.
    Ciuleanu T, Stelmakh L, Cicenas S, Miliauskas S, Grigorescu AC, Hillenbach C, et al. Efficacy and safety of erlotinib versus chemotherapy in second-line treatment of patients with advanced, non-small-cell lung cancer with poor prognosis (TITAN): a randomised multicentre, open-label, phase 3 study. Lancet Oncol. 2012;3:300–8.CrossRefGoogle Scholar
  8. 8.
    Shi Y, Zhang L, Liu X, Zhou C, Zhang L, Zhang S, et al. Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): a randomised, double-blind phase 3 non-inferiority trial. Lancet Oncol. 2013;14:953–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim GW, Song JS, Choi CM, Rho JK, Kim SY, Jang SJ, et al. Multiple resistant factors in lung cancer with primary resistance to EGFR-TK inhibitors confer poor survival. Lung Cancer. 2015;88:139–46.CrossRefPubMedGoogle Scholar
  10. 10.
    West HL, Franklin WA, McCoy J, Gumerlock PH, Vance R, Lau DH, et al. Gefitinib therapy in advanced bronchioloalveolar carcinoma: Southwest Oncology Group Study S0126. J Clin Oncol. 2006;24:1807–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Yang CH, Yu CJ, Shih JY, Chang YC, Hu FC, Tsai MC, et al. Specific EGFR mutations predict treatment outcome of stage IIIB/IV patients with chemotherapy-naive non-small-cell lung cancer receiving first-line gefitinib monotherapy. J Clin Oncol. 2008;26:2745–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang L, Yuan X, Chen Y, Du XJ, Yu S, Yang M. Role of EGFR SNPs in survival of advanced lung adenocarcinoma patients treated with Gefitinib. Gene. 2013;517:60–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J, et al. Erlotinib in lung ancer-molecular and clinical predictors of outcome. N Engl J Med. 2005;53:133–44.CrossRefGoogle Scholar
  14. 14.
    Liu W, He L, Ramírez J, Krishnaswamy S, Kanteti R, Wang YC, et al. Functional EGFR germline polymorphisms may confer risk for EGFR somatic mutations in non-small cell lung cancer, with a predominant effect on exon 19 microdeletions. Cancer Res. 2011;71:2423–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sasaki H, Okuda K, Shimizu S, Takada M, Kawahara M, Kitahara N, et al. EGFR R497K polymorphism is a favorable prognostic factor for advanced lung cancer. J Cancer Res Clin Oncol. 2009;35:313–8.CrossRefGoogle Scholar
  16. 16.
    Wang F, Fu S, Shao Q, Zhou YB, Zhang X, Zhang X, et al. High EGFR copy number predicts benefits from tyrosine kinase inhibitor treatment for non-small cell lung cancer patients with wild-type EGFR. J Transl Med. 2013;11:90.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Douillard JY, Shepherd FA, Hirsh V, Mok T, Socinski MA, Gervais R, et al. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J Clin Oncol. 2010;28:744–52.CrossRefPubMedGoogle Scholar
  18. 18.
    Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R, Wu YL, et al. Gefitinib versus docetaxel in previously treated nonsmall-cell lung cancer (INTEREST): a randomised phase III trial. Lancet. 2008;372:1809–18.CrossRefPubMedGoogle Scholar
  19. 19.
    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.CrossRefPubMedGoogle Scholar
  20. 20.
    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11:121–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen KY, Hsiao CF, Chang GC, Tsai YH, Su WC, Chen YM, et al. EGFR polymorphisms, hormone replacement therapy and lung adenocarcinoma risk: analysis from a genome-wide association study in never-smoking women. Carcinogenesis. 2013;34:612–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu W, Wu X, Zhang W, Montenegro RC, Fackenthal DL, Spitz JA, et al. Relationship of EGFR mutations, expression, amplification, and polymorphisms to epidermal growth factor receptor inhibitors in the NCI60 cell lines. Clin Cancer Res. 2007;13:6788–95.CrossRefPubMedGoogle Scholar
  24. 24.
    Jung M, Cho BC, Lee CH, Park HS, Kang YA, Kim SK, et al. EGFR polymorphism as a predictor of clinical outcome in advanced lung cancer patients treated with EGFR-TKI. Yonsei Med J. 2012;3:1128–35.CrossRefGoogle Scholar
  25. 25.
    Brugger W, Triller N, Blasinska-Morawiec M, Curescu S, Sakalauskas R, Manikhas GM, et al. Prospective molecular marker analyses of EGFR and K S from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J Clin Oncol. 2011;9:4113–20.CrossRefGoogle Scholar
  26. 26.
    Hou WG, Ai WB, Bai XG, Dong HL, Li Z, Zhang YQ, et al. Genetic variation in the EGFR gene and the risk of glioma in a Chinese Han population. PLoS One. 2012;7:e37531.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Scrima M, De Marco C, Fabiani F, Franco R, Pirozzi G, Rocco G, et al. Signaling networks associated with AKT activation in non-small cell lung cancer (NSCLC): new insights on the role of phosphatydil-inositol-3 kinase. PLoS One. 2012;7:e30427.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim MJ, Kang HG, Lee SY, Jeon HS, Lee WK, Park JY, et al. AKT1 polymorphisms and survival of early stage non-small cell lung cancer. J Surg Oncol. 2012;105:167–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Remon J, Morán T, Majem M, Reguart N, Dalmau E, Márquez-Medina D, et al. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins. Cancer Treat Rev. 2014;40:93–101.CrossRefPubMedGoogle Scholar
  30. 30.
    Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom Mass ARRAY iPLEX platform. Current Protocols in Human Genetics 2009. Chapter 2, Unit 2 12.Google Scholar
  31. 31.
    Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Su Z, Dias-Santagata D, Duke M, Hutchinson K, Lin YL, Borger DR, et al. A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer. J Mol Diagn. 2011;13:74–84.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Remon J, Morán T, Reguart N, Majem M, Carcereny E, Lianes P. Beyond EGFR TKI in EGFR-mutant non-small cell lung cancer patients: main challenges still to be overcome. Cancer Treat Rev. 2014;40:723–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Shitara M, Sasaki H, Yokota K, Okuda K, Hikosaka Y, Moriyama S, et al. Polymorphisms in intron 1 of the EGFR gene in non-small cell lung cancer patients. Exp Ther Med. 2012;4:785–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Giovannetti E, Zucali PA, Peters GJ, Cortesi F, D'Incecco A, Smit EF, et al. Association of polymorphisms in AKT1 and EGFR with clinical outcome and toxicity in non-small cell lung cancer patients treated with gefitinib. Mol Cancer Ther. 2010;9:581–93.CrossRefPubMedGoogle Scholar
  36. 36.
    Liu G, Cheng D, Ding K, Le Maitre A, Liu N, Patel D, et al. Pharmacogenetic analysis of BR.21, a placebo-controlled randomized phase III clinical trial of erlotinib in advanced non-small cell lung cancer. J Thorac Oncol. 2012;7:316–22.CrossRefPubMedGoogle Scholar
  37. 37.
    Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle. 2009;8:2502–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fortier AM, Asselin E, Cadrin M. Functional specificity of Akt isoforms in cancer progression. Biomol Concepts. 2011;2:1–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Kumar A, Rajendran V, Sethumadhavan R, Purohit R. AKT kinase pathway: a leading target in cancer research. Sci World J. 2013;2013:756134.Google Scholar
  40. 40.
    Giovannetti E, Erdem L, Olcay E, Leon LG, Peters GJ. Influence of polymorphisms on EGFR targeted therapy in non-small-cell lung cancer. Front Biosci (Landmark Ed). 2011;16:116–30.CrossRefGoogle Scholar
  41. 41.
    Erdem L, Giovannetti E, Leon LG, Honeywell R, Peters GJ. Polymorphisms to predict outcome to the tyrosine kinase inhibitors gefitinib, erlotinib, sorafenib and sunitinib. Curr Top Med Chem. 2012;12:1649–59.CrossRefPubMedGoogle Scholar
  42. 42.
    Pu X, Hildebrandt MA, Lu C, Lin J, Stewart DJ, Ye Y, et al. PI3K/PTEN/AKT/mTOR pathway genetic variation predicts toxicity and distant progression in lung cancer patients receiving platinum-based chemotherapy. Lung Cancer. 2011;71:82–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Xu MQ, Xing QH, Zheng YL, Li S, Gao JJ, He G, et al. Association of AKT1 gene polymorphisms with risk of schizophrenia and with response to antipsychotics in the Chinese population. J Clin Psychiatry. 2007;68:1358–67.CrossRefPubMedGoogle Scholar
  44. 44.
    Li W, Ren S, Li J, Li A, Fan L, Li X, et al. T790M mutation is associated with better efficacy of treatment beyond progression with EGFR-TKI in advanced NSCLC patients. Lung Cancer. 2014;84:295–300.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang Y, Lin L, Xu H, Li T, Zhou Y, Dan H, et al. Genetic variants in AKT1 gene were associated with risk and survival of OSCC in Chinese Han Population. J Oral Pathol Med. 2015;44:45–50.CrossRefPubMedGoogle Scholar
  46. 46.
    Liang W, Wu X, Fang W, Zhao Y, Yang Y, Hu Z, et al. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations. PLoS One. 2014;9(2):e85245.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xiaoqing Zhang
    • 1
  • Junwei Fan
    • 2
  • Yuping Li
    • 1
  • Shengtao Lin
    • 2
  • Ping Shu
    • 1
  • Jian Ni
    • 3
  • Shengying Qin
    • 4
  • Zhemin Zhang
    • 3
  1. 1.Department of Pharmacy, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
  2. 2.Department of Hepatobiliary Pancreatic Surgery, Shanghai First People’s HospitalShanghai Jiaotong UniversityShanghaiChina
  3. 3.Department of Oncology, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
  4. 4.Bio-X Life Science Research CenterShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations