Tumor Biology

, Volume 37, Issue 1, pp 1097–1104 | Cite as

MSX1 inhibits cell migration and invasion through regulating the Wnt/β-catenin pathway in glioblastoma

Original Article

Abstract

Glioblastoma is a type of primary brain tumor with poor prognosis. The hallmark phenotype of glioblastoma is its aggressive invasion. Understanding the molecular mechanism of the invasion behavior of glioblastoma is essential for the development of effective treatment of the disease. In our present study, we found that the expression levels of a homeobox transcription factor, MSX1, were significantly reduced in glioblastoma compared to normal brain tissues. The levels of MSX1 in glioblastoma tissues were also correlated with the survival of the patients. In cultured glioblastoma cells, MSX1 was a negative regulator of cell migration and invasion. Loss of MSX1 enhanced cell migration and induced mesenchymal transition as characterized by the downregulation of E-cadherin and the upregulation of N-cadherin. Overexpression of MSX1 on the other hand led to the inhibition of both cell migration and mesenchymal transition. We also found that MSX1 was able to inhibit the Wnt/β-catenin signaling pathway, and that the ability to regulate the Wnt/β-catenin signaling pathway is critical for MSX1 to suppress glioblastoma cell migration and invasion.

Keywords

Glioblastoma MSX1 Invasion Migration Wnt/β-catenin signaling pathway 

Notes

Conflicts of interest

None

Supplementary material

13277_2015_3892_Fig6_ESM.gif (141 kb)
Supplemental Fig. 1

MSX1 inhibits cell migration and invasion in primary GBM cells. a Migration assay and b invasion assay in primary GBM cells transfected with the indicated siRNA or plasmids. *p < 0.05. (GIF 140 kb)

13277_2015_3892_MOESM1_ESM.tif (7.7 mb)
High Resolution Image (TIFF 7877 kb)

References

  1. 1.
    Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15:455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463:318–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16:488–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Yan YR, Xie Q, Li F, Zhang Y, Ma JW, Xie SM, et al. Epithelial-to-mesenchymal transition is involved in BCNU resistance in human glioma cells. Neuropathol Off J Jpn Soc Neuropathol. 2014;34:128–34.CrossRefGoogle Scholar
  7. 7.
    Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, et al. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology. 2012;14:1379–92.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV, et al. PLAGL2 regulates WNT signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell. 2010;17:497–509.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang K, Zhang J, Han L, Pu P, Kang C. Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2012;7:740–9.CrossRefGoogle Scholar
  10. 10.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W. Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol. 2000;148:567–78.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1:55–67.CrossRefPubMedGoogle Scholar
  13. 13.
    Jamora C, DasGupta R, Kocieniewski P, Fuchs E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature. 2003;422:317–22.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Howe LR, Watanabe O, Leonard J, Brown AM. Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res. 2003;63:1906–13.PubMedGoogle Scholar
  15. 15.
    Vallin J, Thuret R, Giacomello E, Faraldo MM, Thiery JP, Broders F. Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/beta-catenin signaling. J Biol Chem. 2001;276:30350–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu K, Zeng J, Zhou J, Fan J, Chen Y, Wang Z, et al. Slug contributes to cadherin switch and malignant progression in muscle-invasive bladder cancer development. Urol Oncol. 2013;31:1751–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen Y, Shi HY, Stock SR, Stern PH, Zhang M. Regulation of breast cancer-induced bone lesions by beta-catenin protein signaling. J Biol Chem. 2011;286:42575–84.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6:931–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang L, Yang YD, Fu L, Xu W, Liu D, Liang Q, et al. CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma. Oncotarget. 2014;5:7663–76.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mackenzie A, Leeming GL, Jowett AK, Ferguson MW, Sharpe PT. The homeobox gene Hox 7.1 has specific regional and temporal expression patterns during early murine craniofacial embryogenesis, especially tooth development in vivo and in vitro. Development. 1991;111:269–85.PubMedGoogle Scholar
  24. 24.
    Chan-Thomas PS, Thompson RP, Robert B, Yacoub MH, Barton PJ. Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev Dyn Off Publ Am Assoc Anatomists. 1993;197:203–16.Google Scholar
  25. 25.
    Revet I, Huizenga G, Koster J, Volckmann R, van Sluis P, Versteeg R, et al. MSX1 induces the Wnt pathway antagonist genes DKK1, DKK2, DKK3, and SFRP1 in neuroblastoma cells, but does not block Wnt3 and Wnt5a signalling to DVL3. Cancer Lett. 2010;289:195–207.CrossRefPubMedGoogle Scholar
  26. 26.
    Azari H, Millette S, Ansari S, Rahman M, Deleyrolle LP, Reynolds BA. Isolation and expansion of human glioblastoma multiforme tumor cells using the neurosphere assay. J Vis Exp. 2011:e3633.Google Scholar
  27. 27.
    Chen YH, Ishii M, Sucov HM, Maxson Jr RE. Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC Dev Biol. 2008;8:75.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chetcuti A, Aktas S, Mackie N, Ulger C, Toruner G, Alkan M, et al. Expression profiling reveals MSX1 and Ephb2 expression correlates with the invasion capacity of Wilms tumors. Pediatr Blood Cancer. 2011;57:950–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Park K, Kim K, Rho SB, Choi K, Kim D, Oh SH, et al. Homeobox Msx1 interacts with p53 tumor suppressor and inhibits tumor growth by inducing apoptosis. Cancer Res. 2005;65:749–57.PubMedGoogle Scholar
  30. 30.
    Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.CrossRefPubMedGoogle Scholar
  31. 31.
    Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of NeurosurgeryThe People’s Liberation Army General HospitalBeijingChina
  2. 2.Department of NeurosurgeryThe Second Affiliated of Harbin Medical UniversityHarbinChina
  3. 3.Department of AnaesthesiologyThe First Affiliated of Harbin Medical UniversityHarbinChina

Personalised recommendations