Tumor Biology

, Volume 37, Issue 1, pp 763–772 | Cite as

UBE2S is associated with malignant characteristics of breast cancer cells

  • Akter Khondker Ayesha
  • Toshinori Hyodo
  • Eri Asano
  • Naoki Sato
  • Mohammed A. Mansour
  • Satoko Ito
  • Michinari Hamaguchi
  • Takeshi Senga
Original Article


Ubiquitination is essential for various biological processes, such as signal transduction, intracellular trafficking, and protein degradation. Accumulating evidence has demonstrated that ubiquitination plays a crucial role in cancer development. In this report, we examine the expression and function of ubiquitin-conjugating enzyme E2S (UBE2S) in breast cancer. Immunohistochemical analysis revealed that UBE2S is highly expressed in breast cancer. The depletion of UBE2S by siRNA induced disruption of the actin cytoskeleton and focal adhesions. Interestingly, phosphorylation of FAK at Tyr397, which is important for the transduction of integrin-mediated signaling, was significantly reduced by UBE2S knockdown. We also show that UBE2S knockdown suppressed the malignant characteristics of breast cancer cells, such as migration, invasion, and anchorage-independent growth. Our results indicate that UBE2S could be a potential target for breast cancer treatment.


UBE2S Ubiquitination Breast cancer FAK Invasion Migration Anoikis 



We would like to thank the members of the division of cancer biology for their helpful discussions. This research was funded by a grant from the Naito Foundation and the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nanomedicine Molecular Science, 2306).

Conflict of interest



  1. 1.
    Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.CrossRefPubMedGoogle Scholar
  2. 2.
    Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006;22:159–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 2004;1695:55–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Neutzner M, Neutzner A. Enzymes of ubiquitination and deubiquitination. Essays Biochem. 2012;52:37–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell. 2009;33:275–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou MJ, Chen FZ, Chen HC. Ubiquitination involved enzymes and cancer. Med Oncol. 2014;31:93.CrossRefPubMedGoogle Scholar
  8. 8.
    Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressorp53. FEBS Lett. 1997;420:25–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Olson DC, Marechal V, Momand J, Chen J, Romocki C, Levine AJ. Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene. 1993;8:2353–60.PubMedGoogle Scholar
  10. 10.
    Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets. 2005;5:27–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell. 2003;112:779–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Dornan D, Bheddah S, Newton K, Ince W, Frantz GD, Dowd P, et al. COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res. 2004;64:7226–30.CrossRefPubMedGoogle Scholar
  13. 13.
    Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature. 2004;429:86–92.CrossRefPubMedGoogle Scholar
  14. 14.
    Duan W, Gao L, Druhan LJ, Zhu WG, Morrison C, Otterson GA, et al. Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J Natl Cancer Inst. 2004;96:1718–21.CrossRefPubMedGoogle Scholar
  15. 15.
    Logan IR, Gaughan L, McCracken SR, Sapountzi V, Leung HY, Robson CN. Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol Cell Biol. 2006;26:6502–10.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2005;108:171–82.CrossRefGoogle Scholar
  17. 17.
    Satija YK, Bhardwaj A, Das S. A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer. Int J Cancer. 2013;133:2759–68.PubMedGoogle Scholar
  18. 18.
    Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Xie C, Powell C, Yao M, Wu J, Dong Q. Ubiquitin-conjugating enzyme E2C: a potential cancer biomarker. Int J Biochem Cell Biol. 2014;47:113–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008;133:653–65.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Meyer HJ, Rape M. Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol. 2011;22:544–50.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Okamoto Y, Ozaki T, Miyazaki K, Aoyama M, Miyazaki M, Nakagawara A. UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res. 2003;63:4167–73.PubMedGoogle Scholar
  23. 23.
    Hao Z, Zhang H, Cowell J. Ubiquitin-conjugating enzyme UBE2C: molecular biology, role in tumorigenesis, and potential as a biomarker. Tumour Biol. 2012;33:723–30.CrossRefPubMedGoogle Scholar
  24. 24.
    Vasiljevic A, Champier J, Figarella-Branger D, Wierinckx A, Jouvet A, Fèvre-Montange M. Molecular characterization of central neurocytomas: potential markers for tumor typing and progression. Neuropathology. 2013;33:149–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Shen Z, Jiang X, Zeng C, Zheng S, Luo B, Zeng Y, et al. High expression of ubiquitin-conjugating enzyme 2C (UBE2C) correlates with nasopharyngeal carcinoma progression. BMC Cancer. 2013;13:192.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    van Ree JH, Jeganathan KB, Malureanu L, van Deursen JM. Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol. 2010;188:83–100.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Garnett MJ, Mansfeld J, Godwin C, Matsusaka T, Wu J, Russell P, et al. UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat Cell Biol. 2009;11:1363–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Williamson A, Wickliffe KE, Mellone BG, Song L, Karpen GH, Rape M. Identification of a physiological E2 module for the human anaphase-promoting complex. Proc Natl Acad Sci U S A. 2009;106:18213–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Meyer HJ, Rape M. Enhanced protein degradation by branched ubiquitin chains. Cell. 2014;15:910–21.CrossRefGoogle Scholar
  30. 30.
    Tedesco D, Zhang J, Trinh L, Lalehzadeh G, Meisner R, Yamaguchi KD, et al. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in primary breast cancer and modulates sensitivity to topoisomerase II inhibition. Neoplasia. 2007;9:601–13.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roos FC, Evans AJ, Brenner W, Wondergem B, Klomp J, Heir P, et al. Deregulation of E2-EPF ubiquitin carrier protein in papillary renal cell carcinoma. Am J Pathol. 2011;178:853–60.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liang J, Nishi H, Bian ML, Higuma C, Sasaki T, Ito H, et al. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in cervical cancer and associates with tumor growth. Oncol Rep. 2012;28:1519–25.PubMedGoogle Scholar
  33. 33.
    Clarke C, Madden SF, Doolan P, Aherne ST, Joyce H, O’Driscoll L, et al. Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis. Carcinogenesis. 2013;34:2300–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K. REAP: a two minute cell fractionation method. BMC Res Notes. 2010;3:294.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bolós V, Gasent JM, López-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther. 2010;3:83–97.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Serrels A, Canel M, Brunton VG, Frame MC. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: insights from in vivo imaging. Cell Adh Migr. 2011;5:360–5.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994;14:1680–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schlaepfer DD, Broome MA, Hunter T. Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Mol Cell Biol. 1997;17:1702–13.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Frame MC. Newest findings on the oldest oncogene; how activated src does it. J Cell Sci. 2004;117:989–98.CrossRefPubMedGoogle Scholar
  40. 40.
    Playford MP, Schaller MD. The interplay between Src and integrins in normal and tumor biology. Oncogene. 2004;23:7928–46.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Akter Khondker Ayesha
    • 1
  • Toshinori Hyodo
    • 1
  • Eri Asano
    • 1
  • Naoki Sato
    • 2
  • Mohammed A. Mansour
    • 1
  • Satoko Ito
    • 1
  • Michinari Hamaguchi
    • 1
  • Takeshi Senga
    • 1
  1. 1.Division of Cancer BiologyNagoyaJapan
  2. 2.Department of Surgical OncologyNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations