Skip to main content

Advertisement

Log in

Different roles of myofibroblasts in the tumorigenesis of nonsmall cell lung cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Myofibroblasts play a critical role in the cancer cell growth, invasion, and tumor-associated vascularization during the carcinogenesis of nonsmall cell lung cancer (NSCLC), whereas the underlying molecular bases are not completely understood. We isolated Lin-negative, Sca1-low, and CD49e-high myofibroblasts from the NSCLC tissues of the patients and modified the levels of either transforming growth factor β 1 (TGFβ1) or vascular endothelial growth factor A (VEGF-A) in these cells. We found that coculture with TGFβ1-overexpressing myofibroblasts significantly decreased the NSCLC cell growth in an MTT assay through proliferation suppression rather than modulation of cell apoptosis, while significantly increased the NSCLC cell invasiveness in either a transwell migration assay or a scratch wound healing migration assay. However, modulation of TGFβ1 levels in myofibroblasts did not significantly alter vessel formation in a human umbilical vein endothelial cells (HUVECs) transwell collagen gel assay. On the other hand, overexpression of VEGF-A in myofibroblasts significantly increased vessel formation in the HUVECs transwell collagen gel assay. Together, these data suggest that myofibroblasts may regulate cancer cell growth and invasion through TGFβ1 but modulate cancer-associated neovascularization through VEGF-A. Hence, targeting different signaling pathways in myofibroblasts may delicately control NSCLC growth and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jian H, Zhao Y, Liu B, Lu S. Sema4b inhibits growth of non-small cell lung cancer in vitro and in vivo. Cell Signal. 2015;27:1208–13.

    Article  CAS  PubMed  Google Scholar 

  2. Jian H, Zhao Y, Liu B, Lu S. Sema4b inhibits mmp9 to prevent metastasis of non-small cell lung cancer. Tumour Biol. 2014;35:11051–6.

    Article  CAS  PubMed  Google Scholar 

  3. Liu G, Xu S, Jiao F, Ren T, Li Q. Vascular endothelial growth factor b coordinates metastasis of non-small cell lung cancer. Tumour Biol. 2015;36:2185–91.

    Article  CAS  PubMed  Google Scholar 

  4. Lv Q, Shen R, Wang J. Rbpj inhibition impairs the growth of lung cancer. Tumour Biol. 2015;36:3751–6.

    Article  CAS  PubMed  Google Scholar 

  5. Pei J, Lou Y, Zhong R, Han B. Mmp9 activation triggered by epidermal growth factor induced foxo1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014;35:6673–8.

    Article  CAS  PubMed  Google Scholar 

  6. Wang W, Wu X, Tian Y. Crosstalk of ap4 and tgfbeta receptor signaling in nsclc. Tumour Biol. 2015;36:447–52.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao D, Lu Y, Yang C, Zhou X, Xu Z. Activation of fgf receptor signaling promotes invasion of non-small-cell lung cancer. Tumour Biol. 2015;36:3637–42.

    Article  CAS  PubMed  Google Scholar 

  8. Karvonen HM, Lehtonen ST, Sormunen RT, Lappi-Blanco E, Skold CM, Kaarteenaho RL. Lung cancer-associated myofibroblasts reveal distinctive ultrastructure and function. J Thorac Oncol. 2014;9:664–74.

    Article  CAS  PubMed  Google Scholar 

  9. Karki S, Surolia R, Hock TD, Guroji P, Zolak JS, Duggal R, et al. Wilms’ tumor 1 (wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. FASEB J. 2014;28:1122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shu H, Li HF. Prognostic effect of stromal myofibroblasts in lung adenocarcinoma. Neoplasma. 2012;59:658–61.

    Article  CAS  PubMed  Google Scholar 

  11. Kishaba Y, Matsubara D, Niki T. Heterogeneous expression of nestin in myofibroblasts of various human tissues. Pathol Int. 2010;60:378–85.

    Article  PubMed  Google Scholar 

  12. Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 2004;64:8492–5.

    Article  CAS  PubMed  Google Scholar 

  13. Tokunou M, Niki T, Eguchi K, Iba S, Tsuda H, Yamada T, et al. C-met expression in myofibroblasts: role in autocrine activation and prognostic significance in lung adenocarcinoma. Am J Pathol. 2001;158:1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hao Y, Zhang L, He J, Guo Z, Ying L, Xu Z, et al. Functional investigation of nci-h460-inducible myofibroblasts on the chemoresistance to vp-16 with a microfluidic 3d co-culture device. PLoS One. 2013;8:e61754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Massague J. Tgfbeta in cancer. Cell. 2008;134:215–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Padua D, Massague J. Roles of tgfbeta in metastasis. Cell Res. 2009;19:89–102.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao X, Wiersch J, El-Gohary Y, Guo P, Prasadan K, Paredes J, et al. Tgfbeta receptor signaling is essential for inflammation-induced but not beta-cell workload-induced beta-cell proliferation. Diabetes. 2013;62:1217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Antonarakis ES, Carducci MA. Targeting angiogenesis for the treatment of prostate cancer. Expert Opin Ther Targets. 2012;16:365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kluetz PG, Figg WD, Dahut WL. Angiogenesis inhibitors in the treatment of prostate cancer. Expert Opin Pharmacother. 2010;11:233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aragon-Ching JB, Dahut WL. Vegf inhibitors and prostate cancer therapy. Curr Mol Pharmacol. 2009;2:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Delongchamps NB, Peyromaure M. The role of vascular endothelial growth factor in kidney and prostate cancer. Can J Urol. 2007;14:3669–77.

    PubMed  Google Scholar 

  22. Delongchamps NB, Peyromaure M, Dinh-Xuan AT. Role of vascular endothelial growth factor in prostate cancer. Urology. 2006;68:244–8.

    Article  PubMed  Google Scholar 

  23. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.

    Article  CAS  PubMed  Google Scholar 

  24. Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis. 2007;38:258–68.

    Article  CAS  PubMed  Google Scholar 

  25. Nieves BJ, D'Amore PA, Bryan BA. The function of vascular endothelial growth factor. Biofactors. 2009;35:332–7.

    Article  CAS  PubMed  Google Scholar 

  26. Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of vegf in mice. Diabetologia. 2014;57:991–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Donnem T, Al-Shibli K, Al-Saad S, Delghandi MP, Busund LT, Bremnes RM. Vegf-a and vegfr-3 correlate with nodal status in operable non-small cell lung cancer: inverse correlation between expression in tumor and stromal cells. Lung Cancer. 2009;63:277–83.

    Article  PubMed  Google Scholar 

  29. Sun LX, Li WD, Lin ZB, Duan XS, Li XF, Yang N, et al. Protection against lung cancer patient plasma-induced lymphocyte suppression by ganoderma lucidum polysaccharides. Cell Physiol Biochem. 2014;33:289–99.

    Article  CAS  PubMed  Google Scholar 

  30. Cao ZX, Zheng RL, Lin HJ, Luo SD, Zhou Y, Xu YZ, et al. Sklb610: a novel potential inhibitor of vascular endothelial growth factor receptor tyrosine kinases inhibits angiogenesis and tumor growth in vivo. Cell Physiol Biochem. 2011;27:565–74.

    Article  CAS  PubMed  Google Scholar 

  31. Kim HA, Seo KH, Kang YR, Ko HM, Kim KJ, Back HK, et al. Mechanisms of platelet-activating factor-induced enhancement of vegf expression. Cell Physiol Biochem. 2011;27:55–62.

    Article  CAS  PubMed  Google Scholar 

  32. Song N, Liu B, Wu J, Zhang R, Duan L, He W, et al. Vascular endothelial growth factor (vegf) -2578c/a and -460c/t gene polymorphisms and lung cancer risk: a meta-analysis involving 11 case-control studies. Tumour Biol. 2014;35:859–70.

    Article  CAS  PubMed  Google Scholar 

  33. Shi X, Liang W, Yang W, Xia R, Song Y. Decorin is responsible for progression of non-small-cell lung cancer by promoting cell proliferation and metastasis. Tumour Biol. 2015;36:3345–54.

    Article  CAS  PubMed  Google Scholar 

  34. Hao S, Yang Y, Liu Y, Yang S, Wang G, Xiao J, et al. Jam-c promotes lymphangiogenesis and nodal metastasis in non-small cell lung cancer. Tumour Biol. 2014;35:5675–87.

    Article  CAS  PubMed  Google Scholar 

  35. Gu ZZ. T, Fu BH, Hua HX, Yang S, Zhang YQ, Gao LM, Li P: Relationship of serum levels of vegf and tgf-beta1 with radiosensitivity of elderly patients with unresectable non-small cell lung cancer. Tumour Biol. 2014;35:4785–9.

    Article  PubMed  Google Scholar 

  36. Fu BH, Fu ZZ, Meng W, Gu T, Sun XD, Zhang Z (2015) Platelet vegf and serum tgf-beta1 levels predict chemotherapy response in non-small cell lung cancer patients. Tumour Biol

  37. Ding L, Liu K, Jiang Z, Chen Q, Zhou N, Liang Y, et al. The efficacy and safety of pemetrexed plus bevacizumab in previously treated patients with advanced non-squamous non-small cell lung cancer (ns-nsclc). Tumour Biol. 2015;36:2491–9.

    Article  CAS  PubMed  Google Scholar 

  38. Deng ZC, Cao C, Yu YM, Ma HY, Ye M. Vascular endothelial growth factor -634g/c and vascular endothelial growth factor -2578c/a polymorphisms and lung cancer risk: a case-control study and meta-analysis. Tumour Biol. 2014;35:1805–11.

    Article  CAS  PubMed  Google Scholar 

  39. Akamatsu T, Arai Y, Kosugi I, Kawasaki H, Meguro S, Sakao M, et al. Direct isolation of myofibroblasts and fibroblasts from bleomycin-injured lungs reveals their functional similarities and differences. Fibrogenesis Tissue Repair. 2013;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 81401880), Funds from Shanghai government for talent development (Grant 201455), Medical-Engineering Joint Funds from Shanghai Jiao Tong University (Grant No. YG2013MS11), and Funds from Shanghai Chest Hospital [YZ13-15].

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingquan Luo or Shun Lu.

Additional information

Jia Huang and Ziming Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, Z., Ding, Z. et al. Different roles of myofibroblasts in the tumorigenesis of nonsmall cell lung cancer. Tumor Biol. 37, 15525–15534 (2016). https://doi.org/10.1007/s13277-015-3862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3862-8

Keywords

Navigation